Positive Definiteness of Complex Piecewise Linear Functions and Some of Its Applications
Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 519-535
Voir la notice de l'article provenant de la source Math-Net.Ru
Given $\alpha\in(0,1)$ and $c=h+i\beta$, $h,\beta\in\mathbb R$, the function $f_{\alpha,c}\colon\mathbb R\to\mathbb C$ defined as follows is considered: (1) $f_{\alpha,c}$ is Hermitian, i.e., $f_{\alpha,c}(-x)=\overline{f_{\alpha,c}(x)}$, $x\in\mathbb R$; (2) $f_{\alpha,c}(x)=0$ for $x>1$; moreover, on each of the closed intervals $[0,\alpha]$ and $[\alpha,1]$, the function $f_{\alpha,c}$ is linear and satisfies the conditions $f_{\alpha,c}(0)=1$, $f_{\alpha,c}(\alpha)=c$, and $f_{\alpha,c}(1)=0$. It is proved that the complex piecewise linear function $f_{\alpha,c}$ is positive definite on $\mathbb R$ if and only if $$ m(\alpha)\le h\le 1-\alpha\quad \text{and}\quad |\beta|\le\gamma(\alpha,h),
$$
where
$$
m(\alpha)= \begin{cases} 0{} \text{if } 1/\alpha\notin\mathbb N, \\ -\alpha{} \text{if }1/\alpha\in\mathbb N. \end{cases}
$$
If $m(\alpha)$ and $\alpha\in\mathbb Q$, then $\gamma(\alpha,h)>0$; otherwise, $\gamma(\alpha,h)=0$. This result is used to obtain a criterion for the complete monotonicity of functions of a special form and prove a sharp inequality for trigonometric polynomials.
Keywords:
positive definite function, piecewise linear function, completely monotone function, Bochner–Khinchine theorem, Bernstein's inequality.
@article{MZM_2018_103_4_a3,
author = {V. P. Zastavnyi and A. Manov},
title = {Positive {Definiteness} of {Complex} {Piecewise} {Linear} {Functions} and {Some} of {Its} {Applications}},
journal = {Matemati\v{c}eskie zametki},
pages = {519--535},
publisher = {mathdoc},
volume = {103},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a3/}
}
TY - JOUR AU - V. P. Zastavnyi AU - A. Manov TI - Positive Definiteness of Complex Piecewise Linear Functions and Some of Its Applications JO - Matematičeskie zametki PY - 2018 SP - 519 EP - 535 VL - 103 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a3/ LA - ru ID - MZM_2018_103_4_a3 ER -
V. P. Zastavnyi; A. Manov. Positive Definiteness of Complex Piecewise Linear Functions and Some of Its Applications. Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 519-535. http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a3/