Positive Definiteness of Complex Piecewise Linear Functions and Some of Its Applications
Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 519-535

Voir la notice de l'article provenant de la source Math-Net.Ru

Given $\alpha\in(0,1)$ and $c=h+i\beta$, $h,\beta\in\mathbb R$, the function $f_{\alpha,c}\colon\mathbb R\to\mathbb C$ defined as follows is considered: (1) $f_{\alpha,c}$ is Hermitian, i.e., $f_{\alpha,c}(-x)=\overline{f_{\alpha,c}(x)}$, $x\in\mathbb R$; (2) $f_{\alpha,c}(x)=0$ for $x>1$; moreover, on each of the closed intervals $[0,\alpha]$ and $[\alpha,1]$, the function $f_{\alpha,c}$ is linear and satisfies the conditions $f_{\alpha,c}(0)=1$, $f_{\alpha,c}(\alpha)=c$, and $f_{\alpha,c}(1)=0$. It is proved that the complex piecewise linear function $f_{\alpha,c}$ is positive definite on $\mathbb R$ if and only if $$ m(\alpha)\le h\le 1-\alpha\quad \text{and}\quad |\beta|\le\gamma(\alpha,h), $$ where $$ m(\alpha)= \begin{cases} 0{} \text{if } 1/\alpha\notin\mathbb N, \\ -\alpha{} \text{if }1/\alpha\in\mathbb N. \end{cases} $$ If $m(\alpha)$ and $\alpha\in\mathbb Q$, then $\gamma(\alpha,h)>0$; otherwise, $\gamma(\alpha,h)=0$. This result is used to obtain a criterion for the complete monotonicity of functions of a special form and prove a sharp inequality for trigonometric polynomials.
Keywords: positive definite function, piecewise linear function, completely monotone function, Bochner–Khinchine theorem, Bernstein's inequality.
@article{MZM_2018_103_4_a3,
     author = {V. P. Zastavnyi and A. Manov},
     title = {Positive {Definiteness} of {Complex} {Piecewise} {Linear} {Functions} and {Some} of {Its} {Applications}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {519--535},
     publisher = {mathdoc},
     volume = {103},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a3/}
}
TY  - JOUR
AU  - V. P. Zastavnyi
AU  - A. Manov
TI  - Positive Definiteness of Complex Piecewise Linear Functions and Some of Its Applications
JO  - Matematičeskie zametki
PY  - 2018
SP  - 519
EP  - 535
VL  - 103
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a3/
LA  - ru
ID  - MZM_2018_103_4_a3
ER  - 
%0 Journal Article
%A V. P. Zastavnyi
%A A. Manov
%T Positive Definiteness of Complex Piecewise Linear Functions and Some of Its Applications
%J Matematičeskie zametki
%D 2018
%P 519-535
%V 103
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a3/
%G ru
%F MZM_2018_103_4_a3
V. P. Zastavnyi; A. Manov. Positive Definiteness of Complex Piecewise Linear Functions and Some of Its Applications. Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 519-535. http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a3/