Homomorphically Stable Abelian Groups
Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 609-616.

Voir la notice de l'article provenant de la source Math-Net.Ru

A group is said to be homomorphically stable with respect to another group if the union of the homomorphic images of the first group in the second group is a subgroup of the second group. A group is said to be homomorphically stable if it is homomorphically stable with respect to every group. It is shown that a group is homomorphically stable if it is homomorphically stable with respect to its double direct sum. In particular, given any group, the direct sum and the direct product of infinitely many copies of this group are homomorphically stable; all endocyclic groups are homomorphically stable as well. Necessary and sufficient conditions for the homomorphic stability of a fully transitive torsion-free group are found. It is proved that a group is homomorphically stable if and only if so is its reduced part, and a split group is homomorphically stable if and only if so is its torsion-free part. It is shown that every group is homomorphically stable with respect to every periodic group.
Keywords: homomorphic stability, homomorphic image, group of homomorphisms, direct sum of groups.
Mots-clés : homomorphic association
@article{MZM_2018_103_4_a12,
     author = {A. R. Chekhlov},
     title = {Homomorphically {Stable} {Abelian} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {609--616},
     publisher = {mathdoc},
     volume = {103},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a12/}
}
TY  - JOUR
AU  - A. R. Chekhlov
TI  - Homomorphically Stable Abelian Groups
JO  - Matematičeskie zametki
PY  - 2018
SP  - 609
EP  - 616
VL  - 103
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a12/
LA  - ru
ID  - MZM_2018_103_4_a12
ER  - 
%0 Journal Article
%A A. R. Chekhlov
%T Homomorphically Stable Abelian Groups
%J Matematičeskie zametki
%D 2018
%P 609-616
%V 103
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a12/
%G ru
%F MZM_2018_103_4_a12
A. R. Chekhlov. Homomorphically Stable Abelian Groups. Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 609-616. http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a12/

[1] S. Ya. Grinshpon, T. A. Eltsova, “Gomomorfnye obrazy abelevykh grupp”, Fundament. i prikl. matem., 13:3 (2007), 17–24 | MR | Zbl

[2] S. Ya. Grinshpon, T. A. Eltsova, “Gomomorfnaya ustoichivost abelevykh grupp”, Fundament. i prikl. matem., 14:5 (2008), 67–76 | MR | Zbl

[3] S. Ya. Grinshpon, T. A. Eltsova, “Svyaz delimykh i redutsirovannykh grupp s gomomorfnoi ustoichivostyu”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2009, no. 2 (6), 14–19

[4] L. Fuks, Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974 | MR | Zbl

[5] I. A. Shilin, V. V. Kityukov, A. A. Aleksandrov, “Vychislenie grupp gomomorfizmov i proverka gomomorfnoi ustoichivosti par konechnykh grupp”, Prikl. inform., 37:1 (2012), 111–115

[6] M. I. Kabenyuk, “Gomomorfnaya ustoichivost konechnykh grupp”, PDM, 2017, no. 35, 5–13 | DOI

[7] A. R. Chekhlov, “O vpolne kvazitranzitivnykh abelevykh gruppakh”, Sib. matem. zhurn., 57:5 (2016), 1184–1192 | DOI | MR | Zbl