Unconditionally Convergent Rational Interpolation Splines
Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 592-603

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a continuous function on a closed interval, a sequence of rational interpolation splines is constructed which converges uniformly on this closed interval to the given function for any sequence of grids with step width tending to zero. The derivatives possess this unconditional convergence property as well. Estimates of the rate of convergence are given.
Keywords: rational spline, convergence of splines.
Mots-clés : interpolation spline
@article{MZM_2018_103_4_a10,
     author = {A.-R. K. Ramazanov and V. G. Magomedova},
     title = {Unconditionally {Convergent} {Rational} {Interpolation} {Splines}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {592--603},
     publisher = {mathdoc},
     volume = {103},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a10/}
}
TY  - JOUR
AU  - A.-R. K. Ramazanov
AU  - V. G. Magomedova
TI  - Unconditionally Convergent Rational Interpolation Splines
JO  - Matematičeskie zametki
PY  - 2018
SP  - 592
EP  - 603
VL  - 103
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a10/
LA  - ru
ID  - MZM_2018_103_4_a10
ER  - 
%0 Journal Article
%A A.-R. K. Ramazanov
%A V. G. Magomedova
%T Unconditionally Convergent Rational Interpolation Splines
%J Matematičeskie zametki
%D 2018
%P 592-603
%V 103
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a10/
%G ru
%F MZM_2018_103_4_a10
A.-R. K. Ramazanov; V. G. Magomedova. Unconditionally Convergent Rational Interpolation Splines. Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 592-603. http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a10/