Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_103_4_a10, author = {A.-R. K. Ramazanov and V. G. Magomedova}, title = {Unconditionally {Convergent} {Rational} {Interpolation} {Splines}}, journal = {Matemati\v{c}eskie zametki}, pages = {592--603}, publisher = {mathdoc}, volume = {103}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a10/} }
A.-R. K. Ramazanov; V. G. Magomedova. Unconditionally Convergent Rational Interpolation Splines. Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 592-603. http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a10/
[1] Dzh. Alberg, E. Nilson, Dzh. Uolsh, Teoriya splainov i ee prilozheniya, Mir, M., 1972 | MR | Zbl
[2] S. B. Stechkin, Yu. N. Subbotin, “Dobavleniya”: Dzh. Alberg, E. Nilson, Dzh. Uolsh, Teoriya splainov i ee prilozheniya, Mir, M., 1972 | MR | Zbl
[3] S. B. Stechkin, Yu. N. Subbotin, Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR | Zbl
[4] N. P. Korneichuk, Splainy v teorii priblizheniya, Nauka, M., 1984 | MR | Zbl
[5] N. I. Chernykh, “Priblizhenie splainami s zadannoi plotnostyu raspredeleniya uzlov”, Priblizhenie funktsii i operatorov, Tr. MIAN SSSR, 138, 1975, 174–197 | MR | Zbl
[6] V. N. Malozemov, A. B. Pevnyi, Polinomialnye splainy, Izd-vo LGU, L., 1986 | MR | Zbl
[7] Yu. S. Zavyalov, B. S. Kvasov, V. L. Miroshnichenko, Metody splain-funktsii, Nauka, M., 1980 | MR | Zbl
[8] S. Nord, “Approximation properties of the spline fit”, Nordisk Tidskr. Informations-Behandling (BIT), 7 (1967), 132–144 | DOI | MR | Zbl
[9] Yu N. Subbotin, “Variatsii na temu splainov”, Fundament. i prikl. matem., 3:4 (1997), 1043–1058 | MR | Zbl
[10] Al. A. Privalov, “O skhodimosti kubicheskikh interpolyatsionnykh splainov k nepreryvnoi funktsii”, Matem. zametki, 25:5 (1979), 681–700 | MR | Zbl
[11] R. Schaback, “Spezielle rationale Splinefunktionen”, J. Approx. Theory, 7:2 (1973), 281–292 | DOI | MR | Zbl
[12] Q. Duan, K. Djidjeli, W. G. Price, E. H. Twizell, “Weighted rational cubic spline interpolation and its application”, J. Comput. Appl. Math., 117:2 (2000), 121–135 | DOI | MR | Zbl
[13] P. Oja, “Rational spline interpolation to monotonic data”, Proc. Estonian Acad. Sci. Phys. Math., 48:1 (1999), 22–30 | MR | Zbl
[14] M. Tian, H. Geng, “Error analysis of a rational interpolation spline”, Int. J. Math. Anal. (Ruse), 5:25-28 (2011), 1287–1294 | MR | Zbl
[15] M. Z. Hussain, M. Sarfraz, T. S. Shaikh, “Shape preserving rational cubic spline for positive and convex data”, Egyptian Inform. J., 12:3 (2011), 231–236 | DOI
[16] A. Edeo, G. Gonfa, T. Tefera, “Shape preserving $C^2$ rational cubic spline interpolation”, Amer. Sci. Res. J. Engrg. Tech. Sci. (ASRJETS), 12:1 (2015), 110–122