Unconditionally Convergent Rational Interpolation Splines
Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 592-603
Voir la notice de l'article provenant de la source Math-Net.Ru
Given a continuous function on a closed interval, a sequence of rational interpolation splines is constructed which converges uniformly on this closed interval to the given function for any sequence of grids with step width tending to zero. The derivatives possess this unconditional convergence property as well. Estimates of the rate of convergence are given.
Keywords:
rational spline, convergence of splines.
Mots-clés : interpolation spline
Mots-clés : interpolation spline
@article{MZM_2018_103_4_a10,
author = {A.-R. K. Ramazanov and V. G. Magomedova},
title = {Unconditionally {Convergent} {Rational} {Interpolation} {Splines}},
journal = {Matemati\v{c}eskie zametki},
pages = {592--603},
publisher = {mathdoc},
volume = {103},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a10/}
}
A.-R. K. Ramazanov; V. G. Magomedova. Unconditionally Convergent Rational Interpolation Splines. Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 592-603. http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a10/