Unconditionally Convergent Rational Interpolation Splines
Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 592-603.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a continuous function on a closed interval, a sequence of rational interpolation splines is constructed which converges uniformly on this closed interval to the given function for any sequence of grids with step width tending to zero. The derivatives possess this unconditional convergence property as well. Estimates of the rate of convergence are given.
Keywords: rational spline, convergence of splines.
Mots-clés : interpolation spline
@article{MZM_2018_103_4_a10,
     author = {A.-R. K. Ramazanov and V. G. Magomedova},
     title = {Unconditionally {Convergent} {Rational} {Interpolation} {Splines}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {592--603},
     publisher = {mathdoc},
     volume = {103},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a10/}
}
TY  - JOUR
AU  - A.-R. K. Ramazanov
AU  - V. G. Magomedova
TI  - Unconditionally Convergent Rational Interpolation Splines
JO  - Matematičeskie zametki
PY  - 2018
SP  - 592
EP  - 603
VL  - 103
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a10/
LA  - ru
ID  - MZM_2018_103_4_a10
ER  - 
%0 Journal Article
%A A.-R. K. Ramazanov
%A V. G. Magomedova
%T Unconditionally Convergent Rational Interpolation Splines
%J Matematičeskie zametki
%D 2018
%P 592-603
%V 103
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a10/
%G ru
%F MZM_2018_103_4_a10
A.-R. K. Ramazanov; V. G. Magomedova. Unconditionally Convergent Rational Interpolation Splines. Matematičeskie zametki, Tome 103 (2018) no. 4, pp. 592-603. http://geodesic.mathdoc.fr/item/MZM_2018_103_4_a10/

[1] Dzh. Alberg, E. Nilson, Dzh. Uolsh, Teoriya splainov i ee prilozheniya, Mir, M., 1972 | MR | Zbl

[2] S. B. Stechkin, Yu. N. Subbotin, “Dobavleniya”: Dzh. Alberg, E. Nilson, Dzh. Uolsh, Teoriya splainov i ee prilozheniya, Mir, M., 1972 | MR | Zbl

[3] S. B. Stechkin, Yu. N. Subbotin, Splainy v vychislitelnoi matematike, Nauka, M., 1976 | MR | Zbl

[4] N. P. Korneichuk, Splainy v teorii priblizheniya, Nauka, M., 1984 | MR | Zbl

[5] N. I. Chernykh, “Priblizhenie splainami s zadannoi plotnostyu raspredeleniya uzlov”, Priblizhenie funktsii i operatorov, Tr. MIAN SSSR, 138, 1975, 174–197 | MR | Zbl

[6] V. N. Malozemov, A. B. Pevnyi, Polinomialnye splainy, Izd-vo LGU, L., 1986 | MR | Zbl

[7] Yu. S. Zavyalov, B. S. Kvasov, V. L. Miroshnichenko, Metody splain-funktsii, Nauka, M., 1980 | MR | Zbl

[8] S. Nord, “Approximation properties of the spline fit”, Nordisk Tidskr. Informations-Behandling (BIT), 7 (1967), 132–144 | DOI | MR | Zbl

[9] Yu N. Subbotin, “Variatsii na temu splainov”, Fundament. i prikl. matem., 3:4 (1997), 1043–1058 | MR | Zbl

[10] Al. A. Privalov, “O skhodimosti kubicheskikh interpolyatsionnykh splainov k nepreryvnoi funktsii”, Matem. zametki, 25:5 (1979), 681–700 | MR | Zbl

[11] R. Schaback, “Spezielle rationale Splinefunktionen”, J. Approx. Theory, 7:2 (1973), 281–292 | DOI | MR | Zbl

[12] Q. Duan, K. Djidjeli, W. G. Price, E. H. Twizell, “Weighted rational cubic spline interpolation and its application”, J. Comput. Appl. Math., 117:2 (2000), 121–135 | DOI | MR | Zbl

[13] P. Oja, “Rational spline interpolation to monotonic data”, Proc. Estonian Acad. Sci. Phys. Math., 48:1 (1999), 22–30 | MR | Zbl

[14] M. Tian, H. Geng, “Error analysis of a rational interpolation spline”, Int. J. Math. Anal. (Ruse), 5:25-28 (2011), 1287–1294 | MR | Zbl

[15] M. Z. Hussain, M. Sarfraz, T. S. Shaikh, “Shape preserving rational cubic spline for positive and convex data”, Egyptian Inform. J., 12:3 (2011), 231–236 | DOI

[16] A. Edeo, G. Gonfa, T. Tefera, “Shape preserving $C^2$ rational cubic spline interpolation”, Amer. Sci. Res. J. Engrg. Tech. Sci. (ASRJETS), 12:1 (2015), 110–122