Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_103_3_a4, author = {A. Vladimirov}, title = {Certain {Partial} {Conservativeness} {Properties} of {Intuitionistic} {Set} {Theory} with the {Principle} of {Double} {Complement} of {Sets}}, journal = {Matemati\v{c}eskie zametki}, pages = {372--391}, publisher = {mathdoc}, volume = {103}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a4/} }
TY - JOUR AU - A. Vladimirov TI - Certain Partial Conservativeness Properties of Intuitionistic Set Theory with the Principle of Double Complement of Sets JO - Matematičeskie zametki PY - 2018 SP - 372 EP - 391 VL - 103 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a4/ LA - ru ID - MZM_2018_103_3_a4 ER -
%0 Journal Article %A A. Vladimirov %T Certain Partial Conservativeness Properties of Intuitionistic Set Theory with the Principle of Double Complement of Sets %J Matematičeskie zametki %D 2018 %P 372-391 %V 103 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a4/ %G ru %F MZM_2018_103_3_a4
A. Vladimirov. Certain Partial Conservativeness Properties of Intuitionistic Set Theory with the Principle of Double Complement of Sets. Matematičeskie zametki, Tome 103 (2018) no. 3, pp. 372-391. http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a4/
[1] A. G. Dragalin, Matematicheskii intuitsionizm. Vvedenie v teoriyu dokazatelstv, Nauka, M., 1979 | MR | Zbl
[2] S. Klini, R. Vesli, Osnovaniya intuitsionistskoi matematiki s tochki zreniya teorii rekursivnykh funktsii, Nauka, M., 1978 | MR | Zbl
[3] S. K. Klini, Vvedenie v metamatematiku, IL, M., 1957 | MR | Zbl
[4] T. Jech, Set Theory, Springer, Berlin, 2003 | DOI | MR | Zbl
[5] H. Friedman, “The consistency of classical set theory relative to a set theory with intuitionistic logic”, J. Symbolic Logic, 38 (1973), 315–319 | DOI | MR | Zbl
[6] W. C. Powell, “Extending Gödel negative interpretation to ZF”, J. Symbolic Logic, 40 (1975), 221–229 | DOI | MR | Zbl
[7] R. J. Grayson, “Heyting-valued models for intuitionistic set theory”, Applications of Sheaves, Lecture Notes in Math., 753, Springer, Berlin, 1979, 402–414 | DOI | MR | Zbl
[8] V. A. Lyubetskii, “Teoremy perenosa i algebra modalnykh operatorov”, Algebra i logika, 36:3 (1997), 282–303 | MR | Zbl
[9] V. Kh. Khakhanyan, “Predikaty realizuemosti dlya teorii mnozhestv s intuitsionistskoi logikoi”, Smirnovskie chteniya. Vtoraya mezhdunarodnaya konferentsiya, Izd-vo in-ta filosofii RAN, M., 1999, 71–72
[10] H. M. Friedman, A. Ščedrov, “The lack of definable witnesses and provably recursive functions in intuitionistic set theories”, Adv. in Math., 57:1 (1985), 1–13 | DOI | MR | Zbl
[11] H. Friedman, “Some applications of Kleene's method for intuitionistic systems”, Cambridge Summer School in Mathematical Logic, Lecture Notes in Math., 337, Springer, Berlin, 1973, 113–170 | DOI | MR | Zbl
[12] J. Myhill, “Some properties of intuitionistic Zermelo–Fraenkel set theory”, Cambridge Summer School in Mathematical Logic, Lecture Notes in Math., 337, Springer, Berlin, 1973, 206–231 | DOI | MR | Zbl
[13] V. Kh. Khakhanyan, “Teoriya mnozhestv i tezis Chercha”, Issledovaniya po neklassicheskim logikam i formalnym sistemam, Nauka, M., 1983, 198–208 | MR
[14] M. Beeson, “Continuity in intuitionistic set theories”, Logic Colloquium '78, Stud. Logic Found. Math., 97, North-Holland, Amsterdam, 1979, 1–52 | MR | Zbl
[15] A. G. Vladimirov, “Svoistva effektivnosti intuitsionistskoi teorii mnozhestv so skhemoi collection”, Matem. zametki, 89:5 (2011), 658–672 | DOI | MR | Zbl
[16] D. C. McCarty, Realizability and Recursive Mathematics, PhD Thesis, Oxford Univ. Press, Oxford, 1981
[17] C. McCarty, “Realizability and recursive set theory”, Ann. Pure Appl. Logic, 32:2 (1986), 153–183 | DOI | MR | Zbl
[18] M. Rathjen, “Realizability for constructive Zermelo–Fraenkel set theory”, Logic Colloquium '03, Lect. Notes Log., 24, Assoc. Symbol. Logic, La Jolla, CA, 2006, 282–314 | MR | Zbl
[19] M. Rathjen, “Choice principles in constructive and classical set theories”, Logic Colloquium '02, Lect. Notes Log., 27, Assoc. Symbol. Logic, La Jolla, CA, 2006, 299–326 | MR | Zbl
[20] M. Rathjen, “Metamathematical properties of intuitionistic set theories with choice principles”, New Computational Paradigms. Changing Conceptions of What is Computable, Springer, New York, 2008, 287–312 | MR | Zbl
[21] V. Kh. Khakhanyan, “Nevyvodimost printsipa uniformizatsii iz tezisa Chercha v intuitsionistskoi teorii mnozhestv”, Matem. zametki, 43:5 (1988), 685–691 | MR | Zbl