Certain Partial Conservativeness Properties of Intuitionistic Set Theory with the Principle of Double Complement of Sets
Matematičeskie zametki, Tome 103 (2018) no. 3, pp. 372-391
Voir la notice de l'article provenant de la source Math-Net.Ru
The Zermelo–Fraenkel set theory with the underlying intuitionistic logic (for brevity, we refer to it as the intuitionistic Zermelo–Fraenkel set theory) in a two-sorted language (where the sort $0$ is assigned to numbers and the sort $1$, to sets) with the collection scheme used as the replacement scheme of axioms (the $ZFI2C$ theory) is considered. Some partial conservativeness properties of the intuitionistic Zermelo–Fraenkel set theory with the principle of double complement of sets ($DCS$) with respect to a certain class of arithmetic formulas (the class all so-called AEN formulas) are proved. Namely, let $T$ be one of the theories $ZFI2C$
and $ZFI2C + DCS$.
Then
1) the theory $T+ECT$ is conservative over $T$ with respect to the class of AEN formulas;
2) the theory $T+ECT+M$ is conservative over $T+M^-$ with respect to the class of AEN formulas.
Here
$ECT$
stands for the extended Church's thesis,
$M$
is the strong
Markov principle, and $M^-$
is the weak Markov principle.
The following partial conservativeness properties are also proved:
3) $T+ECT+M$ is conservative over $T$ with respect to the class of negative arithmetic formulas;
4) the classical theory $ZF2$ is conservative over $ZFI2C$ with respect to the class of negative arithmetic formulas.
Keywords:
intuitionistic logic, Zermelo–Fraenkel axioms for set theory, intuitionistic Zermelo–Fraenkel set theory, recursive realizability, partial conservativeness properties.
@article{MZM_2018_103_3_a4,
author = {A. Vladimirov},
title = {Certain {Partial} {Conservativeness} {Properties} of {Intuitionistic} {Set} {Theory} with the {Principle} of {Double} {Complement} of {Sets}},
journal = {Matemati\v{c}eskie zametki},
pages = {372--391},
publisher = {mathdoc},
volume = {103},
number = {3},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a4/}
}
TY - JOUR AU - A. Vladimirov TI - Certain Partial Conservativeness Properties of Intuitionistic Set Theory with the Principle of Double Complement of Sets JO - Matematičeskie zametki PY - 2018 SP - 372 EP - 391 VL - 103 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a4/ LA - ru ID - MZM_2018_103_3_a4 ER -
%0 Journal Article %A A. Vladimirov %T Certain Partial Conservativeness Properties of Intuitionistic Set Theory with the Principle of Double Complement of Sets %J Matematičeskie zametki %D 2018 %P 372-391 %V 103 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a4/ %G ru %F MZM_2018_103_3_a4
A. Vladimirov. Certain Partial Conservativeness Properties of Intuitionistic Set Theory with the Principle of Double Complement of Sets. Matematičeskie zametki, Tome 103 (2018) no. 3, pp. 372-391. http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a4/