Certain Partial Conservativeness Properties of Intuitionistic Set Theory with the Principle of Double Complement of Sets
Matematičeskie zametki, Tome 103 (2018) no. 3, pp. 372-391

Voir la notice de l'article provenant de la source Math-Net.Ru

The Zermelo–Fraenkel set theory with the underlying intuitionistic logic (for brevity, we refer to it as the intuitionistic Zermelo–Fraenkel set theory) in a two-sorted language (where the sort $0$ is assigned to numbers and the sort $1$, to sets) with the collection scheme used as the replacement scheme of axioms (the $ZFI2C$ theory) is considered. Some partial conservativeness properties of the intuitionistic Zermelo–Fraenkel set theory with the principle of double complement of sets ($DCS$) with respect to a certain class of arithmetic formulas (the class all so-called AEN formulas) are proved. Namely, let $T$ be one of the theories $ZFI2C$ and $ZFI2C + DCS$. Then 1) the theory $T+ECT$ is conservative over $T$ with respect to the class of AEN formulas; 2) the theory $T+ECT+M$ is conservative over $T+M^-$ with respect to the class of AEN formulas. Here $ECT$ stands for the extended Church's thesis, $M$ is the strong Markov principle, and $M^-$ is the weak Markov principle. The following partial conservativeness properties are also proved: 3) $T+ECT+M$ is conservative over $T$ with respect to the class of negative arithmetic formulas; 4) the classical theory $ZF2$ is conservative over $ZFI2C$ with respect to the class of negative arithmetic formulas.
Keywords: intuitionistic logic, Zermelo–Fraenkel axioms for set theory, intuitionistic Zermelo–Fraenkel set theory, recursive realizability, partial conservativeness properties.
@article{MZM_2018_103_3_a4,
     author = {A. Vladimirov},
     title = {Certain {Partial} {Conservativeness} {Properties} of {Intuitionistic} {Set} {Theory} with the {Principle} of {Double} {Complement} of {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {372--391},
     publisher = {mathdoc},
     volume = {103},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a4/}
}
TY  - JOUR
AU  - A. Vladimirov
TI  - Certain Partial Conservativeness Properties of Intuitionistic Set Theory with the Principle of Double Complement of Sets
JO  - Matematičeskie zametki
PY  - 2018
SP  - 372
EP  - 391
VL  - 103
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a4/
LA  - ru
ID  - MZM_2018_103_3_a4
ER  - 
%0 Journal Article
%A A. Vladimirov
%T Certain Partial Conservativeness Properties of Intuitionistic Set Theory with the Principle of Double Complement of Sets
%J Matematičeskie zametki
%D 2018
%P 372-391
%V 103
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a4/
%G ru
%F MZM_2018_103_3_a4
A. Vladimirov. Certain Partial Conservativeness Properties of Intuitionistic Set Theory with the Principle of Double Complement of Sets. Matematičeskie zametki, Tome 103 (2018) no. 3, pp. 372-391. http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a4/