Representations of the Klein Group
Matematičeskie zametki, Tome 103 (2018) no. 3, pp. 346-363.

Voir la notice de l'article provenant de la source Math-Net.Ru

The canonical representation of the Klein group $K_4=\mathbb Z_2\oplus\mathbb Z_2$ on the space $\mathbb C^*=\mathbb C\setminus\{0\}$ induces a representation of this group on the ring $\mathscr L= C[z,z^{-1}]$, $z\in\mathbb C^*$, of Laurent polynomials and, as a consequence, a representation of the group $K_4$ on the automorphism group of the group $G=GL(4,\mathscr L)$ by means of the elementwise action. The semidirect product $\widehat G= G\ltimes K_4$ is considered together with a realization of the group $\widehat G$ as a group of semilinear automorphisms of the free $4$-dimensional $\mathscr L$-module $\mathscr M^4$. A three-parameter family of representations $\mathfrak R$ of $K_4$ in the group $\widehat G$ and a three-parameter family of elements $\mathfrak X\in\mathscr M^4$ with polynomial coordinates of degrees $2(\ell-1)$, $2\ell$, $2(\ell-1)$, and $2\ell$, where $\ell$ is an arbitrary positive integer (one of the three parameters), are constructed. It is shown that, for any given family of parameters, the vector $\mathfrak X$ is a fixed point of the corresponding representation $\mathfrak R$. An algorithm for calculating the polynomials that are the components of $\mathfrak X$ was obtained in a previous paper of the authors, in which it was proved that these polynomials give explicit formulas for automorphisms of the solution space of the doubly confluent Heun equation.
Keywords: semilinear mappings, ring of Laurent polynomials, representations of the Klein group, doubly confluent Heun equation.
@article{MZM_2018_103_3_a2,
     author = {V. M. Buchstaber and S. I. Tertychnyi},
     title = {Representations of the {Klein} {Group}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {346--363},
     publisher = {mathdoc},
     volume = {103},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a2/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - S. I. Tertychnyi
TI  - Representations of the Klein Group
JO  - Matematičeskie zametki
PY  - 2018
SP  - 346
EP  - 363
VL  - 103
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a2/
LA  - ru
ID  - MZM_2018_103_3_a2
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A S. I. Tertychnyi
%T Representations of the Klein Group
%J Matematičeskie zametki
%D 2018
%P 346-363
%V 103
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a2/
%G ru
%F MZM_2018_103_3_a2
V. M. Buchstaber; S. I. Tertychnyi. Representations of the Klein Group. Matematičeskie zametki, Tome 103 (2018) no. 3, pp. 346-363. http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a2/

[1] V. M. Bukhshtaber, S. I. Tertychnyi, “Avtomorfizmy prostranstva reshenii spetsialnykh dvazhdy konflyuentnykh uravnenii Goina”, Funkts. analiz i ego pril., 50:3 (2016), 12–33 | DOI | MR | Zbl

[2] D. Schmidt, G. Wolf, “The double confluent Heun equation”, Heun's Differential Equations, ed. A. Ronveaux, Oxford Univ. Press, New York, 1995 | MR | Zbl

[3] S. Slavyanov, V. Lai, Spetsialnye funktsii. Edinaya teoriya, osnovannaya na analize osobennostei, Nevskii dialekt, SPb., 2002

[4] V. M. Bukhshtaber, S. I. Tertychnyi, “Golomorfnye resheniya dvazhdy konflyuentnogo uravneniya Goina, assotsiirovannogo s RSJ-modelyu perekhoda Dzhozefsona”, TMF, 182:3 (2015), 373–404 | DOI | MR

[5] Klein Four-Group, https://groupprops.subwiki.org/wiki/Klein_four-group

[6] Zh. Dedonne, Geometriya klassicheskikh grupp, Mir, M., 1974 | MR | Zbl