A Functional Limit Theorem for Decomposable Branching Processes with Two Particle Types
Matematičeskie zametki, Tome 103 (2018) no. 3, pp. 323-335.

Voir la notice de l'article provenant de la source Math-Net.Ru

A decomposable Galton–Watson branching process with two particle types is studied. It is assumed that the particles of the first type produce equal numbers of particles of the first and second types, while the particles of the second type produce only particles of their own type. Under the condition that the total number of particles of the second type is greater than $N\to \infty$, a functional limit theorem for the process describing the number of particles of the first type in different generations is proved.
Keywords: decomposable Galton–Watson branching process, local time of a Brownian excursion, functional limit theorems.
@article{MZM_2018_103_3_a0,
     author = {V. I. Afanasyev},
     title = {A {Functional} {Limit} {Theorem} for {Decomposable} {Branching} {Processes} with {Two} {Particle} {Types}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--335},
     publisher = {mathdoc},
     volume = {103},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a0/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - A Functional Limit Theorem for Decomposable Branching Processes with Two Particle Types
JO  - Matematičeskie zametki
PY  - 2018
SP  - 323
EP  - 335
VL  - 103
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a0/
LA  - ru
ID  - MZM_2018_103_3_a0
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T A Functional Limit Theorem for Decomposable Branching Processes with Two Particle Types
%J Matematičeskie zametki
%D 2018
%P 323-335
%V 103
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a0/
%G ru
%F MZM_2018_103_3_a0
V. I. Afanasyev. A Functional Limit Theorem for Decomposable Branching Processes with Two Particle Types. Matematičeskie zametki, Tome 103 (2018) no. 3, pp. 323-335. http://geodesic.mathdoc.fr/item/MZM_2018_103_3_a0/

[1] V. A. Vatutin, E. E. Dyakonova, “Razlozhimye vetvyaschiesya protsessy s fiksirovannym momentom vyrozhdeniya”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Tr. MIAN, 290, MAIK, M., 2015, 114–135 | DOI | MR | Zbl

[2] V. A. Vatutin, E. E. Dyakonova, “O vyrozhdenii razlozhimykh vetvyaschikhsya protsessov”, Diskret. matem., 27:4 (2015), 26–37 | DOI | MR | Zbl

[3] V. I. Afanasev, “Funktsionalnye predelnye teoremy dlya razlozhimogo vetvyaschegosya protsessa s dvumya tipami chastits”, Diskret. matem., 27:2 (2015), 22–44 | DOI | MR | Zbl

[4] V. A. Vatutin, “Uslovnaya funktsionalnaya predelnaya teorema dlya razlozhimykh vetvyaschikhsya protsessov s dvumya tipami chastits”, Matem. zametki, 101:5 (2017), 669–683 | DOI | MR | Zbl

[5] V. I. Afanasev, “O razlozhimom vetvyaschemsya protsesse s dvumya tipami chastits”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki. II, Tr. MIAN, 294, MAIK, M., 2016, 7–19 | DOI | MR | Zbl

[6] M. Drmota, B. Gittenberger, “On the profile of random trees”, Random Structures Algorithms, 10:4 (1997), 421–451 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[7] M. Drmota, Random Trees. An Interplay Between Combinatorics and Probability, Springer-Verlag, Vienna, 2009 | MR | Zbl

[8] R. T. Durrett, D. L. Iglehart, “Functionals of Brownian excursion”, Ann. Probability, 5:1 (1977), 130–135 | DOI | MR | Zbl

[9] V. F. Kolchin, Sluchainye otobrazheniya, Teoriya veroyatnostei i matematicheskaya statistika, Nauka, M., 1984 | MR | Zbl

[10] G. B. Dvait, Tablitsy integralov i drugie matematicheskie formuly, Nauka, M., 1983 | MR