On Two-Dimensional Sums in Abelian Groups
Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 273-294.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if, for a subset $A$ of a finite Abelian group $G$, under the action of a linear operator $L\colon G^3 \to G^2$, the image $L(A,A,A)$ has cardinality less than $(7/4)|A|^2$, then there exists a subgroup $H \subseteq G$ and an element $x \in G$ for which $A \subseteq H+x$; further, $|H| (3/2)|A|$.
Keywords: Abelian group, linear operator, sums of sets, additive combinatorics.
Mots-clés : convolution
@article{MZM_2018_103_2_a9,
     author = {A. A. Uvakin},
     title = {On {Two-Dimensional} {Sums} in {Abelian} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {273--294},
     publisher = {mathdoc},
     volume = {103},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a9/}
}
TY  - JOUR
AU  - A. A. Uvakin
TI  - On Two-Dimensional Sums in Abelian Groups
JO  - Matematičeskie zametki
PY  - 2018
SP  - 273
EP  - 294
VL  - 103
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a9/
LA  - ru
ID  - MZM_2018_103_2_a9
ER  - 
%0 Journal Article
%A A. A. Uvakin
%T On Two-Dimensional Sums in Abelian Groups
%J Matematičeskie zametki
%D 2018
%P 273-294
%V 103
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a9/
%G ru
%F MZM_2018_103_2_a9
A. A. Uvakin. On Two-Dimensional Sums in Abelian Groups. Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 273-294. http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a9/

[1] T. Tao, V. H. Vu, Additive Combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl

[2] M. B. Nathanson, Additive Number Theory. Inverse Problems and Geometry of Sumsets, Grad. Texts in Math., 165, Springer, New York, 1996 | MR | Zbl

[3] B. Green, I. Z. Ruzsa, “Sets with small sumset and rectification”, Bull. London Math. Soc., 38:1 (2005), 43–52 | MR | Zbl

[4] T. Sanders, “Additive structures in sumsets”, Math. Proc. Cambridge Philos. Soc., 144:2 (2008), 289–316 | MR | Zbl

[5] I. D. Shkredov, “O mnozhestvakh s malym udvoeniem”, Matem. zametki, 84:6 (2008), 927–947 | DOI | MR | Zbl

[6] D. A. Moskvin, G. A. Freiman, A. A. Yudin, “Strukturnaya teoriya slozheniya mnozhestv i lokalnye predelnye teoremy dlya nezavisimykh reshetchatykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 19:1 (1974), 52–62 | MR | Zbl

[7] A. A. Uvakin, “O dvumernykh summakh i raznostyakh”, Matem. zametki, 98:4 (2015), 570–589 | DOI | MR | Zbl

[8] S. Herdade, J. Kim, S. Kopparty, A Cauchy–Davenport Theorem for Linear Maps, 2015, arXiv: 1508.02100

[9] M. Kneser, “Abschätzung der asymptotischen Dichte von Summenmengen”, Math. Z., 58 (1953), 459–484 | DOI | MR | Zbl

[10] T. Sanders, An Analytic Approach to a Weak Non-Abelian Kneser-type Theorem, 2012, arXiv: 1212.0457

[11] A. I. Kostrikin, Vvedenie v algebru. Chast III. Osnovnye struktury algebry, MTsNMO, M., 2009

[12] I. V. Vyugin, I. D. Shkredov, “Ob additivnykh sdvigakh multiplikativnykh podgrupp”, Matem. sb., 203:6 (2012), 81–100 | DOI | MR | Zbl