Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_103_2_a6, author = {I. V. Netay}, title = {Hirzebruch {Functional} {Equations} and {Krichever} {Complex} {Genera}}, journal = {Matemati\v{c}eskie zametki}, pages = {236--247}, publisher = {mathdoc}, volume = {103}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a6/} }
I. V. Netay. Hirzebruch Functional Equations and Krichever Complex Genera. Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 236-247. http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a6/
[1] V. M. Bukhshtaber, I. V. Netai, “Funktsionalnoe uravnenie Khirtsebrukha i ellipticheskie funktsii urovnya $d$”, Funkts. analiz i ego pril., 49:4 (2015), 1–17 | DOI
[2] V. M. Buchstaber, T. E. Panov, N. Ray, “Toric genera”, Int. Math. Res. Not. IMRN, 2010:16 (2010), 3207–3262 | MR | Zbl
[3] V. M. Buchstaber, T. E. Panov, Toric Topology, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | MR | Zbl
[4] I. M. Krichever, “Formalnye gruppy i formula Ati–Khirtsebrukha”, Izv. AN SSSR. Ser. matem., 38:6 (1974), 1289–1304 | MR | Zbl
[5] Oleg R. Musin, “On rigid Hirzebruch genera”, Mosc. Math. J., 11:1 (2011), 139–147 | MR | Zbl
[6] F. Hirzebruch, Th. Berger, R. Jung, Manifolds and Modular Forms, Friedr. Vieweg Sohn, Braunschweig, 1992 | MR | Zbl
[7] F. Hirzebruch, “Elliptic genera of level $N$ for complex manifolds”, Differential Geometrical Methods in Theoretical Physics, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 250, Kluwer Acad. Publ., Dordrecht, 1988, 37–63 | DOI | MR | Zbl
[8] V. M. Bukhshtaber, E. Yu. Netai, “$\mathbb{C}P(2)$-multiplikativnye rody Khirtsebrukha i ellipticheskie kogomologii”, UMN, 69:4 (418) (2014), 181–182 | DOI | MR | Zbl
[9] V. M. Bukhshtaber, E. Yu. Bunkova, “Mnogoobraziya reshenii funktsionalnykh uravnenii Khirtsebrukha”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Tr. MIAN, 290, MAIK, M., 2015, 136–148 | DOI
[10] I. M. Krichever, “Obobschennye ellipticheskie rody i funktsii Beikera–Akhiezera”, Matem. zametki, 47:2 (1990), 34–45 | MR | Zbl
[11] I. M. Krichever, “Ellipticheskie resheniya uravneniya Kadomtseva–Petviashvili i integriruemye sistemy chastits”, Funkts. analiz i ego pril., 14:4 (1980), 45–54 | MR | Zbl
[12] U. Fulton, Tablitsy Yunga i ikh prilozheniya k teorii predstavlenii i geometrii, MNTsMO, M., 2006