The Dirichlet Problem for an Ordinary Continuous Second-Order Differential Equation
Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 295-302

Voir la notice de l'article provenant de la source Math-Net.Ru

The extremum principle for an ordinary continuous second-order differential equation with variable coefficients is proved and this principle is used to establish the uniqueness of the solution of the Dirichlet problem. The problem under consideration is equivalently reduced to the Fredholm integral equation of the second kind and the unique solvability of this integral equation is proved.
Keywords: continuous differential equation, fractional integro-differential operator, Dirichlet problem, extremum principle.
@article{MZM_2018_103_2_a10,
     author = {B. I. Efendiev},
     title = {The {Dirichlet} {Problem} for an {Ordinary} {Continuous} {Second-Order} {Differential} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {295--302},
     publisher = {mathdoc},
     volume = {103},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a10/}
}
TY  - JOUR
AU  - B. I. Efendiev
TI  - The Dirichlet Problem for an Ordinary Continuous Second-Order Differential Equation
JO  - Matematičeskie zametki
PY  - 2018
SP  - 295
EP  - 302
VL  - 103
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a10/
LA  - ru
ID  - MZM_2018_103_2_a10
ER  - 
%0 Journal Article
%A B. I. Efendiev
%T The Dirichlet Problem for an Ordinary Continuous Second-Order Differential Equation
%J Matematičeskie zametki
%D 2018
%P 295-302
%V 103
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a10/
%G ru
%F MZM_2018_103_2_a10
B. I. Efendiev. The Dirichlet Problem for an Ordinary Continuous Second-Order Differential Equation. Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 295-302. http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a10/