The Dirichlet Problem for an Ordinary Continuous Second-Order Differential Equation
Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 295-302.

Voir la notice de l'article provenant de la source Math-Net.Ru

The extremum principle for an ordinary continuous second-order differential equation with variable coefficients is proved and this principle is used to establish the uniqueness of the solution of the Dirichlet problem. The problem under consideration is equivalently reduced to the Fredholm integral equation of the second kind and the unique solvability of this integral equation is proved.
Keywords: continuous differential equation, fractional integro-differential operator, Dirichlet problem, extremum principle.
@article{MZM_2018_103_2_a10,
     author = {B. I. Efendiev},
     title = {The {Dirichlet} {Problem} for an {Ordinary} {Continuous} {Second-Order} {Differential} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {295--302},
     publisher = {mathdoc},
     volume = {103},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a10/}
}
TY  - JOUR
AU  - B. I. Efendiev
TI  - The Dirichlet Problem for an Ordinary Continuous Second-Order Differential Equation
JO  - Matematičeskie zametki
PY  - 2018
SP  - 295
EP  - 302
VL  - 103
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a10/
LA  - ru
ID  - MZM_2018_103_2_a10
ER  - 
%0 Journal Article
%A B. I. Efendiev
%T The Dirichlet Problem for an Ordinary Continuous Second-Order Differential Equation
%J Matematičeskie zametki
%D 2018
%P 295-302
%V 103
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a10/
%G ru
%F MZM_2018_103_2_a10
B. I. Efendiev. The Dirichlet Problem for an Ordinary Continuous Second-Order Differential Equation. Matematičeskie zametki, Tome 103 (2018) no. 2, pp. 295-302. http://geodesic.mathdoc.fr/item/MZM_2018_103_2_a10/

[1] A. M. Nakhushev, “O nepreryvnykh differentsialnykh uravneniyakh i ikh raznostnykh analogakh”, Dokl. AN SSSR, 300:4 (1988), 796–799 | MR | Zbl

[2] A. M. Nakhushev, “O polozhitelnosti operatorov nepreryvnogo i diskretnogo differentsirovaniya i integrirovaniya vesma vazhnykh v drobnom ischislenii i v teorii uravnenii smeshannogo tipa”, Differents. uravneniya, 34:1 (1998), 101–109 | MR | Zbl

[3] A. V. Pskhu, “K teorii operatora integro-differentsirovaniya kontinualnogo poryadka”, Differents. uravneniya, 40:1 (2004), 120–127 | MR | Zbl

[4] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003 | Zbl

[5] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005 | MR | Zbl

[6] A. M. Nakhushev, “Zadacha Shturma–Liuvillya dlya differentsialnogo uravneniya vtorogo poryadka s drobnymi proizvodnymi v mladshikh chlenakh”, Dokl. AN SSSR, 234:2 (1977), 308–311 | MR | Zbl

[7] L. Kh. Gadzova, “K teorii kraevykh zadach dlya differentsialnogo uravneniya drobnogo poryadka s postoyannymi koeffitsientami”, Dokl. Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 16:2 (2014), 34–40

[8] L. Kh. Gadzova, “Obobschennaya zadacha Dirikhle dlya lineinogo differentsialnogo uravneniya drobnogo poryadka s postoyannymi koeffitsientami”, Differents. uravneniya, 50:1 (2014), 121–125 | DOI | MR | Zbl

[9] B. I. Efendiev, “Zadacha Koshi dlya obyknovennogo differentsialnogo uravneniya vtorogo poryadka s kontinualnoi proizvodnoi”, Differents. uravneniya, 47:9 (2011), 1364–1368 | MR | Zbl

[10] B. I. Efendiev, “Zadacha Steklova dlya obyknovennogo differentsialnogo uravneniya vtorogo poryadka s kontinualnoi proizvodnoi”, Differents. uravneniya, 49:4 (2013), 469–475 | MR | Zbl

[11] B. I. Efendiev, “Zadacha Dirikhle dlya obyknovennogo differentsialnogo uravneniya vtorogo poryadka s kontinualnoi proizvodnoi”, Matem. zametki, 97:4 (2015), 620–628 | DOI | MR | Zbl

[12] B. I. Efendiev, “Nachalnaya zadacha dlya nepreryvnogo differentsialnogo uravneniya vtorogo poryadka”, Differents. uravneniya, 50:4 (2014), 564–568 | MR | Zbl