An Analog of Titchmarsh's Theorem for the Fourier--Walsh Transform
Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 101-110
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the Fourier–Walsh transform on ${\mathbb R}_+=[0,+\infty)$, we prove a dyadic analog of the classical Titchmarsh theorem on the description of the image under the Fourier transformation of the set of functions satisfying the Lipschitz condition in $L^2$.
Keywords:
Fourier–Walsh transform, Lipschitz conditions, dyadic harmonic analysis.
@article{MZM_2018_103_1_a8,
author = {S. S. Platonov},
title = {An {Analog} of {Titchmarsh's} {Theorem} for the {Fourier--Walsh} {Transform}},
journal = {Matemati\v{c}eskie zametki},
pages = {101--110},
publisher = {mathdoc},
volume = {103},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a8/}
}
S. S. Platonov. An Analog of Titchmarsh's Theorem for the Fourier--Walsh Transform. Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 101-110. http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a8/