An Analog of Titchmarsh's Theorem for the Fourier--Walsh Transform
Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 101-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the Fourier–Walsh transform on ${\mathbb R}_+=[0,+\infty)$, we prove a dyadic analog of the classical Titchmarsh theorem on the description of the image under the Fourier transformation of the set of functions satisfying the Lipschitz condition in $L^2$.
Keywords: Fourier–Walsh transform, Lipschitz conditions, dyadic harmonic analysis.
@article{MZM_2018_103_1_a8,
     author = {S. S. Platonov},
     title = {An {Analog} of {Titchmarsh's} {Theorem} for the {Fourier--Walsh} {Transform}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {101--110},
     publisher = {mathdoc},
     volume = {103},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a8/}
}
TY  - JOUR
AU  - S. S. Platonov
TI  - An Analog of Titchmarsh's Theorem for the Fourier--Walsh Transform
JO  - Matematičeskie zametki
PY  - 2018
SP  - 101
EP  - 110
VL  - 103
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a8/
LA  - ru
ID  - MZM_2018_103_1_a8
ER  - 
%0 Journal Article
%A S. S. Platonov
%T An Analog of Titchmarsh's Theorem for the Fourier--Walsh Transform
%J Matematičeskie zametki
%D 2018
%P 101-110
%V 103
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a8/
%G ru
%F MZM_2018_103_1_a8
S. S. Platonov. An Analog of Titchmarsh's Theorem for the Fourier--Walsh Transform. Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 101-110. http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a8/

[1] E. Ch. Titchmarsh, Vvedenie v teoriyu integralov Fure, OGIZ, M., 1948 | MR | Zbl

[2] S. S. Platonov, “Preobrazovanie Fure funktsii, udovletvoryayuschikh usloviyu Lipshitsa, na simmetricheskikh prostranstvakh ranga 1”, Sib. matem. zhurn., 46:6 (2005), 1374–1387 | MR | Zbl

[3] M. S. Younis, “Fourier transform of Lipschitz functions on the hyperbolic plane”, Internat. J. Math. Math. Sci., 21:2 (1998), 397–401 | DOI | MR | Zbl

[4] R. Daher, M. Hamma, “An analog of Titchmarsh's theorem of Jacobi transform”, Int. J. Math. Anal. (Ruse), 6:17-20 (2012), 975–981 | MR | Zbl

[5] M. Maslouhi, “An analog of Titchmarsh's theorem for the Dunkl transform”, Integral Transforms Spec. Funct., 21:9-10 (2010), 771–778 | DOI | MR | Zbl

[6] F. Schipp, W. R. Wade, P. Simon, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, 1990 | MR | Zbl

[7] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[8] B. I. Golubov, “Dvoichnye obobschennye funktsii”, Matem. sb., 198:2 (2007), 67–90 | DOI | MR | Zbl

[9] B. I. Golubov, “Dvoichnyi analog tauberovoi teoremy Vinera i smezhnye voprosy”, Izv. RAN. Ser. matem., 67:1 (2003), 33–58 | DOI | MR | Zbl

[10] B. I. Golubov, “Ob analoge neravenstva Khardi dlya preobrazovaniya Fure–Uolsha”, Izv. RAN. Ser. matem., 65:3 (2001), 3–14 | DOI | MR | Zbl

[11] A. I. Rubinshtein, “O modulyakh nepreryvnosti funktsii, opredelennykh na nulmernoi gruppe”, Matem. zametki, 23:3 (1978), 379–388 | MR | Zbl