An Analog of Titchmarsh's Theorem for the Fourier--Walsh Transform
Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 101-110

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the Fourier–Walsh transform on ${\mathbb R}_+=[0,+\infty)$, we prove a dyadic analog of the classical Titchmarsh theorem on the description of the image under the Fourier transformation of the set of functions satisfying the Lipschitz condition in $L^2$.
Keywords: Fourier–Walsh transform, Lipschitz conditions, dyadic harmonic analysis.
@article{MZM_2018_103_1_a8,
     author = {S. S. Platonov},
     title = {An {Analog} of {Titchmarsh's} {Theorem} for the {Fourier--Walsh} {Transform}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {101--110},
     publisher = {mathdoc},
     volume = {103},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a8/}
}
TY  - JOUR
AU  - S. S. Platonov
TI  - An Analog of Titchmarsh's Theorem for the Fourier--Walsh Transform
JO  - Matematičeskie zametki
PY  - 2018
SP  - 101
EP  - 110
VL  - 103
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a8/
LA  - ru
ID  - MZM_2018_103_1_a8
ER  - 
%0 Journal Article
%A S. S. Platonov
%T An Analog of Titchmarsh's Theorem for the Fourier--Walsh Transform
%J Matematičeskie zametki
%D 2018
%P 101-110
%V 103
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a8/
%G ru
%F MZM_2018_103_1_a8
S. S. Platonov. An Analog of Titchmarsh's Theorem for the Fourier--Walsh Transform. Matematičeskie zametki, Tome 103 (2018) no. 1, pp. 101-110. http://geodesic.mathdoc.fr/item/MZM_2018_103_1_a8/