On the Coincidence of Group Connections Induced by an Intrinsic Composite Equipment of a Distribution
Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 896-907.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a multidimensional projective space, a distribution of planes is considered. Under the assumption that there is a relative invariant scoped by a subobject of a fundamental object of the first order, an internal composite equipment of the distribution is made, which is an analog of the Cartan equipment and Norder normalization of the second kind. It is proved that the composition equipment induces six bunches of group connections in the associated principal bundle which are intrinsically determined by the distribution itself. In every bundle, a unique intrinsic connection is distinguished. Analytic and geometric conditions for the coincidence of different types of connections are found. In the paper, the Cartan–Laptev method is used. All considerations are of local nature.
Keywords: projective space, principal bundle, connection, Cartan equipment, Norden normalization, internal composite equipment.
Mots-clés : distribution, relative invariant
@article{MZM_2017_102_6_a9,
     author = {O. M. Omelyan},
     title = {On the {Coincidence} of {Group} {Connections} {Induced} by an {Intrinsic} {Composite} {Equipment} of a {Distribution}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {896--907},
     publisher = {mathdoc},
     volume = {102},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a9/}
}
TY  - JOUR
AU  - O. M. Omelyan
TI  - On the Coincidence of Group Connections Induced by an Intrinsic Composite Equipment of a Distribution
JO  - Matematičeskie zametki
PY  - 2017
SP  - 896
EP  - 907
VL  - 102
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a9/
LA  - ru
ID  - MZM_2017_102_6_a9
ER  - 
%0 Journal Article
%A O. M. Omelyan
%T On the Coincidence of Group Connections Induced by an Intrinsic Composite Equipment of a Distribution
%J Matematičeskie zametki
%D 2017
%P 896-907
%V 102
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a9/
%G ru
%F MZM_2017_102_6_a9
O. M. Omelyan. On the Coincidence of Group Connections Induced by an Intrinsic Composite Equipment of a Distribution. Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 896-907. http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a9/

[1] G. F. Laptev, N. M. Ostianu, “Raspredeleniya $m$-mernykh lineinykh elementov v prostranstve proektivnoi svyaznosti. I”, Tr. Geom. semin., 3, VINITI, M., 1971, 49–94 | MR

[2] G. F. Laptev, “Ob invariantnom osnaschenii poverkhnosti v prostranstve affinnoi svyaznosti”, Dokl. AN SSSR, 126:3 (1959), 490–493 | MR | Zbl

[3] O. M. Omelyan, “Vnutrennie gruppovye svyaznosti na raspredelenii ploskostei”, Vestn. ChGPU im. I. Ya. Yakovleva, 5 (52) (2006), 120–125

[4] O. M. Omelyan, “Chetyre indutsirovannykh svyaznosti na raspredelenii ploskostei”, Mezhdunarodnaya konferentsiya po geometrii i analizu, Penza, 2003, 63–69

[5] O. M. Omelyan, “Parallel displacements in the bunch of connections of first type on distribution of planes”, Differ. Geom. Dyn. Syst., 8 (2006), 200–203 | MR | Zbl

[6] Yu. I. Shevchenko, “Struktura osnascheniya mnogoobraziya lineinykh figur”, VI Pribaltiiskaya geometricheskaya konferentsiya, Tezisy dokladov, Tallin, 1984, 137–138

[7] Yu. I. Shevchenko, Osnascheniya tsentroproektivnykh mnogoobrazii, Kaliningr. gos. un-t, Kaliningrad, 2000

[8] A. V. Stolyarov, Teoretiko-gruppovoi metod differentsialno-geometricheskikh issledovanii i ego prilozheniya, ChGPU, Cheboksary, 2002

[9] O. M. Omelyan, “Netenzornost ob'ekta krivizny gruppovoi svyaznosti na raspredelenii ploskostei”, Differ. geom. mnogoobr. figur, 33 (2002), 74–78 | MR | Zbl

[10] L. E. Evtushik, Yu. G. Lumiste, N. M. Ostianu, A. P. Shirokov, “Differentsialno-geometricheskie struktury na mnogoobraziyakh”, Problemy geometrii, VINITI, M., 1979, 5–247

[11] O. M. Omelyan, “Puchki svyaznostei 1-go i 2-go tipov, indutsirovannye kompozitsionnym osnascheniem raspredeleniya ploskostei”, Dvizheniya v obobschennykh prostranstvakh, Penza, 2005, 94–101

[12] O. M. Omelyan, “Klassifikatsiya puchkov svyaznostei, indutsirovannykh kompozitsionnym osnascheniem raspredeleniya ploskostei”, Differ. geom. mnogoobr. figur, 37 (2006), 119–127 | MR | Zbl

[13] A. V. Skryagina, “Puchok svyaznostei 1-go tipa, indutsirovannyi osnascheniem Bortolotti ploskostnoi poverkhnosti”, Problemy matematicheskii i fizicheskikh nauk, Kaliningrad, 2000, 35–58

[14] O. M. Omelyan, “Parallelnye pereneseniya v puchke svyaznostei 3-go tipa na raspredelenii ploskostei”, Mezhdunarodnyi seminar “Geometriya v Odesse – 2006. Differentsialnaya geometriya i ee primenenie”, Tezisy dokladov, Odessa, 2006, 131–133

[15] Yu. I. Shevchenko, “Ob osnovnoi zadache proektivno-differentsialnoi geometrii poverkhnosti”, Differ. geom. mnogoobr. figur, 20 (1989), 122–128 | MR | Zbl