Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_102_6_a7, author = {A. A. Kuleshov}, title = {Continuous {Sums} of {Ridge} {Functions} on a {Convex} {Body} and the {Class} {VMO}}, journal = {Matemati\v{c}eskie zametki}, pages = {866--873}, publisher = {mathdoc}, volume = {102}, number = {6}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a7/} }
A. A. Kuleshov. Continuous Sums of Ridge Functions on a Convex Body and the Class VMO. Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 866-873. http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a7/
[1] Yu. P. Ofman, “O nailuchshem priblizhenii funktsii dvukh peremennykh funktsiyami vida $\varphi(x)+\psi(y)$”, Izv. AN SSSR. Ser. matem., 25:2 (1961), 239–252 | MR | Zbl
[2] S. Ya. Khavinson, “Chebyshevskaya teorema dlya priblizheniya funktsii dvukh peremennykh summami $\varphi(x)+\psi(y)$”, Izv. AN SSSR. Ser. matem., 33:3 (1969), 650–666 | MR | Zbl
[3] X. Sun, E. W. Cheney, “The fundamentality of sets of ridge functions”, Aequationes Math., 44:2-3 (1992), 226–235 | MR | Zbl
[4] D. Braess, A. Pinkus, “Interpolation by ridge functions”, J. Approx. Theory, 73:2 (1993), 218–236 | DOI | MR | Zbl
[5] V. E. Maiorov, “On best approximation by ridge functions”, J. Approx. Theory, 99 (1999), 68–94 | DOI | MR | Zbl
[6] V. E. Ismailov, A. Pinkus, “Interpolation on lines by ridge functions”, J. Approx. Theory, 175 (2013), 91–113 | DOI | MR | Zbl
[7] A. Aliev, V. E. Ismailov, “On a smoothness problem in ridge function representation”, Adv. in Appl. Math., 73 (2016), 154–169 | DOI | MR | Zbl
[8] A. Pinkus, Ridge Functions, Cambridge Tracts in Math., 205, Cambridge Univ. Press, Cambridge, 2015 | MR | Zbl
[9] A. A. Vasileva, “Entropiinye chisla operatorov vlozheniya vesovykh prostranstv Soboleva”, Matem. zametki, 98:6 (2015), 937–940 | DOI | MR | Zbl
[10] A. A. Vasileva, “Poperechniki vesovykh klassov Soboleva na oblasti s pikom”, Matem. sb., 206:10 (2015), 37–70 | DOI | MR | Zbl
[11] A. A. Vasileva, “Otsenki poperechnikov diskretnykh funktsionalnykh klassov, porozhdennykh dvukhvesovym operatorom summirovaniya”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki. II, Tr. MIAN, 294, MAIK, M., 2016, 308–324 | DOI | MR | Zbl
[12] A. I. Tyulenev, “Traces of weighted Sobolev spaces with Muckenhoupt weight. The case $p=1$”, Nonlinear Anal., 128 (2015), 248–272 | DOI | MR | Zbl
[13] A. I. Tyulenev, “Besov-type spaces of variable smoothness on rough domains”, Nonlinear Anal., 145 (2016), 176–198 | DOI | MR | Zbl
[14] A. Yu. Golovko, “Additivnye i multiplikativnye anizotropnye otsenki integralnykh norm differentsiruemykh funktsii na neregulyarnykh oblastyakh”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Tr. MIAN, 290, MAIK, M., 2015, 293–303 | DOI | Zbl
[15] S. V. Konyagin, A. A. Kuleshov, “O nepreryvnosti konechnykh summ ridzh-funktsii”, Matem. zametki, 98:2 (2015), 308–309 | DOI | MR | Zbl
[16] S. V. Konyagin, A. A. Kuleshov, “O nekotorykh svoistvakh konechnykh summ ridzh-funktsii, opredelennykh na vypuklykh podmnozhestvakh $\mathbb R^n$”, Funktsionalnye prostranstva, teoriya priblizhenii, smezhnye razdely matematicheskogo analiza, Tr. MIAN, 293, MAIK, M., 2016, 193–200 | DOI | MR | Zbl
[17] A. A. Kuleshov, “O nekotorykh svoistvakh gladkikh summ ridzh-funktsii”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki. II, Tr. MIAN, 294, MAIK, M., 2016, 99–104 | DOI | MR | Zbl
[18] H. Herrlich, Axiom of Choice, Lecture Notes in Math., 1876, Springer-Verlag, Berlin, 2006 | DOI | MR | Zbl
[19] A. Korenovskii, Mean Oscillations and Equimeasurable Rearrangements of Functions, Lect. Notes Unione Mat. Ital., 4, Springer-Verlag, Berlin, 2007 | MR | Zbl