Continuous Sums of Ridge Functions on a Convex Body and the Class VMO
Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 866-873.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sums of ridge functions on convex bodies in the space $\mathbb R^n$ are studied. It is established that, under sufficiently general constraints on the functions of one variable generating the sums, each of these sums must belong to the class VMO on each finite closed interval of its domain.
Keywords: ridge function, the class VMO.
@article{MZM_2017_102_6_a7,
     author = {A. A. Kuleshov},
     title = {Continuous {Sums} of {Ridge} {Functions} on a {Convex} {Body} and the {Class} {VMO}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {866--873},
     publisher = {mathdoc},
     volume = {102},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a7/}
}
TY  - JOUR
AU  - A. A. Kuleshov
TI  - Continuous Sums of Ridge Functions on a Convex Body and the Class VMO
JO  - Matematičeskie zametki
PY  - 2017
SP  - 866
EP  - 873
VL  - 102
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a7/
LA  - ru
ID  - MZM_2017_102_6_a7
ER  - 
%0 Journal Article
%A A. A. Kuleshov
%T Continuous Sums of Ridge Functions on a Convex Body and the Class VMO
%J Matematičeskie zametki
%D 2017
%P 866-873
%V 102
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a7/
%G ru
%F MZM_2017_102_6_a7
A. A. Kuleshov. Continuous Sums of Ridge Functions on a Convex Body and the Class VMO. Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 866-873. http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a7/

[1] Yu. P. Ofman, “O nailuchshem priblizhenii funktsii dvukh peremennykh funktsiyami vida $\varphi(x)+\psi(y)$”, Izv. AN SSSR. Ser. matem., 25:2 (1961), 239–252 | MR | Zbl

[2] S. Ya. Khavinson, “Chebyshevskaya teorema dlya priblizheniya funktsii dvukh peremennykh summami $\varphi(x)+\psi(y)$”, Izv. AN SSSR. Ser. matem., 33:3 (1969), 650–666 | MR | Zbl

[3] X. Sun, E. W. Cheney, “The fundamentality of sets of ridge functions”, Aequationes Math., 44:2-3 (1992), 226–235 | MR | Zbl

[4] D. Braess, A. Pinkus, “Interpolation by ridge functions”, J. Approx. Theory, 73:2 (1993), 218–236 | DOI | MR | Zbl

[5] V. E. Maiorov, “On best approximation by ridge functions”, J. Approx. Theory, 99 (1999), 68–94 | DOI | MR | Zbl

[6] V. E. Ismailov, A. Pinkus, “Interpolation on lines by ridge functions”, J. Approx. Theory, 175 (2013), 91–113 | DOI | MR | Zbl

[7] A. Aliev, V. E. Ismailov, “On a smoothness problem in ridge function representation”, Adv. in Appl. Math., 73 (2016), 154–169 | DOI | MR | Zbl

[8] A. Pinkus, Ridge Functions, Cambridge Tracts in Math., 205, Cambridge Univ. Press, Cambridge, 2015 | MR | Zbl

[9] A. A. Vasileva, “Entropiinye chisla operatorov vlozheniya vesovykh prostranstv Soboleva”, Matem. zametki, 98:6 (2015), 937–940 | DOI | MR | Zbl

[10] A. A. Vasileva, “Poperechniki vesovykh klassov Soboleva na oblasti s pikom”, Matem. sb., 206:10 (2015), 37–70 | DOI | MR | Zbl

[11] A. A. Vasileva, “Otsenki poperechnikov diskretnykh funktsionalnykh klassov, porozhdennykh dvukhvesovym operatorom summirovaniya”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki. II, Tr. MIAN, 294, MAIK, M., 2016, 308–324 | DOI | MR | Zbl

[12] A. I. Tyulenev, “Traces of weighted Sobolev spaces with Muckenhoupt weight. The case $p=1$”, Nonlinear Anal., 128 (2015), 248–272 | DOI | MR | Zbl

[13] A. I. Tyulenev, “Besov-type spaces of variable smoothness on rough domains”, Nonlinear Anal., 145 (2016), 176–198 | DOI | MR | Zbl

[14] A. Yu. Golovko, “Additivnye i multiplikativnye anizotropnye otsenki integralnykh norm differentsiruemykh funktsii na neregulyarnykh oblastyakh”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Tr. MIAN, 290, MAIK, M., 2015, 293–303 | DOI | Zbl

[15] S. V. Konyagin, A. A. Kuleshov, “O nepreryvnosti konechnykh summ ridzh-funktsii”, Matem. zametki, 98:2 (2015), 308–309 | DOI | MR | Zbl

[16] S. V. Konyagin, A. A. Kuleshov, “O nekotorykh svoistvakh konechnykh summ ridzh-funktsii, opredelennykh na vypuklykh podmnozhestvakh $\mathbb R^n$”, Funktsionalnye prostranstva, teoriya priblizhenii, smezhnye razdely matematicheskogo analiza, Tr. MIAN, 293, MAIK, M., 2016, 193–200 | DOI | MR | Zbl

[17] A. A. Kuleshov, “O nekotorykh svoistvakh gladkikh summ ridzh-funktsii”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki. II, Tr. MIAN, 294, MAIK, M., 2016, 99–104 | DOI | MR | Zbl

[18] H. Herrlich, Axiom of Choice, Lecture Notes in Math., 1876, Springer-Verlag, Berlin, 2006 | DOI | MR | Zbl

[19] A. Korenovskii, Mean Oscillations and Equimeasurable Rearrangements of Functions, Lect. Notes Unione Mat. Ital., 4, Springer-Verlag, Berlin, 2007 | MR | Zbl