Minimal Self-Joinings of Infinite Mixing Actions of Rank~1
Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 851-856.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that measure-preserving actions of rank 1 of the groups $\mathbb{Z}^n$ and $\mathbb{R}^n$ on a Lebesgue space with a $\sigma$-finite measure have minimal self-joinings.
Keywords: space with a $\sigma$-finite measure, measure-preserving transformation, action of rank 1, minimal self-joining.
@article{MZM_2017_102_6_a5,
     author = {I. V. Klimov and V. V. Ryzhikov},
     title = {Minimal {Self-Joinings} of {Infinite} {Mixing} {Actions} of {Rank~1}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {851--856},
     publisher = {mathdoc},
     volume = {102},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a5/}
}
TY  - JOUR
AU  - I. V. Klimov
AU  - V. V. Ryzhikov
TI  - Minimal Self-Joinings of Infinite Mixing Actions of Rank~1
JO  - Matematičeskie zametki
PY  - 2017
SP  - 851
EP  - 856
VL  - 102
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a5/
LA  - ru
ID  - MZM_2017_102_6_a5
ER  - 
%0 Journal Article
%A I. V. Klimov
%A V. V. Ryzhikov
%T Minimal Self-Joinings of Infinite Mixing Actions of Rank~1
%J Matematičeskie zametki
%D 2017
%P 851-856
%V 102
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a5/
%G ru
%F MZM_2017_102_6_a5
I. V. Klimov; V. V. Ryzhikov. Minimal Self-Joinings of Infinite Mixing Actions of Rank~1. Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 851-856. http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a5/

[1] D. J. Rudolph, “An example of measure-preserving map with minimal self-joinings, and applications”, J. Analyse Math., 35:1 (1979), 97–122 | DOI | MR | Zbl

[2] J. Aaronson, M. Nadkarni, “$L_\infty$ eigenvalues and $L_2$ spectra of non-singulartransformations”, Proc. London Math. Soc. (3), 55:3 (1987), 538–570 | DOI | MR | Zbl

[3] V. V. Ryzhikov, Zh.-P. Tuveno, “O tsentralizatore beskonechnogo peremeshivayuschego preobrazovaniya ranga odin”, Funkts. analiz i ego pril., 49:3 (2015), 88–91 | DOI | MR | Zbl

[4] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Predstavleniya gruppy diffeomorfizmov”, UMN, 30:6 (186) (1975), 3–50 | MR | Zbl

[5] R. S. Ismagilov, “Ob unitarnykh predstavleniyakh gruppy diffeomorfizmov prostranstva $\mathbb{R}^n$, $n\ge2$”, Funkts. analiz i ego pril., 9:2 (1975), 71–72 | MR | Zbl

[6] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl

[7] Yu. A. Neretin, “O sootvetstvii mezhdu bozonnym prostranstvom Foka i prostranstvom $L^2$ po mere Puassona”, Matem. sb., 188:11 (1997), 19–50 | DOI | MR | Zbl

[8] E. Roy, “Poisson suspensions and infinite ergodic theory”, Ergodic Theory Dynam. Systems, 29:2 (2009), 667–683 | DOI | MR | Zbl

[9] V. V. Ryzhikov, “Ergodicheskie gomoklinicheskie gruppy, sidonovskie konstruktsii i puassonovskie nadstroiki”, Tr. MMO, 75, no. 1, MTsNMO, M., 2014, 93–103 | MR | Zbl

[10] V. V. Ryzhikov, Zh.-P. Tuveno, “Diz'yunktnost, delimost i kvaziprostota sokhranyayuschikh meru deistvii”, Funkts. analiz i ego pril., 40:3 (2006), 85–89 | DOI | MR | Zbl

[11] A. B. Katok, A. M. Stepin, “Approksimatsii v ergodicheskoi teorii”, UMN, 22:5 (137) (1967), 81–106 | MR | Zbl

[12] A. I. Bashtanov, “Conjugacy Classes are Dense in the Space of Mixing $\mathbb{Z}^d$-Actions”, Math. Notes, 99:1 (2016), 9–23 | DOI