Bounded Composition Operator on Lorentz Spaces
Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 836-843.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study composition operators on Lorentz spaces. In particular, we obtain necessary and sufficient conditions under which a measurable mapping induces a bounded composition operator.
Keywords: composition operator, Lorentz spaces, measurable mappings.
@article{MZM_2017_102_6_a3,
     author = {N. A. Evseev},
     title = {Bounded {Composition} {Operator} on {Lorentz} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {836--843},
     publisher = {mathdoc},
     volume = {102},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a3/}
}
TY  - JOUR
AU  - N. A. Evseev
TI  - Bounded Composition Operator on Lorentz Spaces
JO  - Matematičeskie zametki
PY  - 2017
SP  - 836
EP  - 843
VL  - 102
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a3/
LA  - ru
ID  - MZM_2017_102_6_a3
ER  - 
%0 Journal Article
%A N. A. Evseev
%T Bounded Composition Operator on Lorentz Spaces
%J Matematičeskie zametki
%D 2017
%P 836-843
%V 102
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a3/
%G ru
%F MZM_2017_102_6_a3
N. A. Evseev. Bounded Composition Operator on Lorentz Spaces. Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 836-843. http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a3/

[1] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[2] J. Malý, Advanced Theory of Differentiation – Lorentz Spaces, , 2003 http://www.karlin.mff.cuni.cz/~maly/lorentz.pdf

[3] L. Grafakos, Classical Fourier Analysis, Grad. Texts in Math., 249, Springer, New York, 2008 | MR | Zbl

[4] E. A. Nordgren, “Composition operators”, Canad. J. Math., 20 (1968), 442–449 | DOI | MR | Zbl

[5] J. H. Shapiro, Composition Operators and Classical Function Theory, Springer, New York, 1993 | MR | Zbl

[6] R. K. Singh, J. S. Manhas, Composition Operators on Function Spaces, North-Holland Math. Stud., 179, North-Holland Publ, Amsterdam, 1993 | MR | Zbl

[7] Studies on Composition Operators, Proceedings of the Rocky Mountain Mathematics Consortium Conference, Contemp. Math., 213, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl

[8] S. K. Vodopyanov, “Composition operators on Sobolev spaces”, Complex Analysis and Dynamical Systems II, Contemp. Math., 382, Amer. Math. Soc., Providence, RI, 2005, 401–415 | MR | Zbl

[9] S. K. Vodopyanov, “O regulyarnosti otobrazhenii, obratnykh k sobolevskim”, Matem. sb., 203:10 (2012), 3–32 | DOI | MR | Zbl

[10] S. K. Vodopyanov, N. A. Evseev, “Izomorfizmy sobolevskikh prostranstv na gruppakh Karno i metricheskie svoistva otobrazhenii”, Dokl. AN, 464:2 (2015), 131–135 | DOI | MR | Zbl

[11] S. K. Vodopyanov, “O dopustimykh zamenakh peremennykh dlya funktsii klassov Soboleva na (sub)rimanovykh mnogoobraziyakh”, Dokl. AN, 468:6 (2016), 609–613 | DOI | MR | Zbl

[12] S. Hencl, L. Kleprlík, J. Malý, “Composition operator and Sobolev–Lorentz spaces $WL^{n,q}$”, Studia Math., 221:3 (2014), 197–208 | DOI | MR | Zbl

[13] J. T. Campbell, J. E. Jamison, “The analysis of composition operators on $L^p$ and the Hopf decomposition”, J. Math. Anal. Appl., 159:2 (1991), 520–531 | DOI | MR | Zbl

[14] S. K. Vodopyanov, A. D. Ukhlov, “Funktsii mnozhestva i ikh prilozheniya v teorii prostranstv Lebega i Soboleva. I”, Matem. tr., 6:2 (2003), 14–65 | MR | Zbl

[15] R. Kumar, R. Kumar, “Compact composition operators on Lorentz spaces”, Mat. Vesnik, 57:3-4 (2005), 109–112 | MR | Zbl

[16] S. R. Arora, G. Datt, S. Verma, “Composition operators on Lorentz spaces”, Bull. Austral. Math. Soc., 76:2 (2007), 205–214 | DOI | MR | Zbl

[17] E. Kwessi, P. Alfonso, G. De Souza, A. Abebe, “A note on multiplication and composition operators in Lorentz spaces”, J. Funct. Spaces Appl., 2012 (2012), 293613 | DOI | MR | Zbl

[18] J. Kauhanen, P. Koskela, J. Malý, “On functions with derivatives in a Lorentz space”, Manuscripta Math., 100:1 (1999), 87–101 | DOI | MR | Zbl