Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_102_6_a2, author = {S. Yu. Dobrokhotov and V. E. Nazaikinskii}, title = {On the {Asymptotics} of a {Bessel-Type} {Integral} {Having} {Applications} in {Wave} {Run-Up} {Theory}}, journal = {Matemati\v{c}eskie zametki}, pages = {828--835}, publisher = {mathdoc}, volume = {102}, number = {6}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a2/} }
TY - JOUR AU - S. Yu. Dobrokhotov AU - V. E. Nazaikinskii TI - On the Asymptotics of a Bessel-Type Integral Having Applications in Wave Run-Up Theory JO - Matematičeskie zametki PY - 2017 SP - 828 EP - 835 VL - 102 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a2/ LA - ru ID - MZM_2017_102_6_a2 ER -
%0 Journal Article %A S. Yu. Dobrokhotov %A V. E. Nazaikinskii %T On the Asymptotics of a Bessel-Type Integral Having Applications in Wave Run-Up Theory %J Matematičeskie zametki %D 2017 %P 828-835 %V 102 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a2/ %G ru %F MZM_2017_102_6_a2
S. Yu. Dobrokhotov; V. E. Nazaikinskii. On the Asymptotics of a Bessel-Type Integral Having Applications in Wave Run-Up Theory. Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 828-835. http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a2/
[1] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Kharakteristiki s osobennostyami i granichnye znacheniya asimptoticheskogo resheniya zadachi Koshi dlya vyrozhdayuschegosya volnovogo uravneniya”, Matem. zametki, 100:5 (2016), 710–731 | DOI | MR | Zbl
[2] E. N. Pelinovskii, Gidrodinamika voln tsunami, IPF RAN, Nizhnii Novgorod, 1996
[3] J. J. Stoker, Water Waves. The Mathematical Theory with Applications, John Wiley and Sons, New York, 1958 | MR | Zbl
[4] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977 | MR | Zbl
[5] S. Yu. Dobrokhotov, G. N. Makrakis, V. E. Nazaikinskii, T. Ya. Tudorovskii, “Novye formuly dlya kanonicheskogo operatora Maslova v okrestnosti fokalnykh tochek i kaustik v dvumernykh kvaziklassicheskikh asimptotikakh”, TMF, 177:3 (2013), 355–386 | DOI | Zbl
[6] J. B. Keller, H. B. Keller, Water Wave Run-Up on a Beach, Research Report, Contract No. NONR-3828(00), Office of Naval Research, Department of the Navy, Washington, DC, 1964
[7] C. E. Synolakis, “On the roots of $f(z)=J_0(z)-iJ_1(z)$”, Quart. Appl. Math., 46:1 (1988), 105–107 | DOI | MR | Zbl
[8] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 1966 | MR | Zbl