On the Asymptotics of a Bessel-Type Integral Having Applications in Wave Run-Up Theory
Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 828-835.

Voir la notice de l'article provenant de la source Math-Net.Ru

Rapidly oscillating integrals of the form \begin{equation*} I(r,h)=\frac{1}{2\pi}\int_{-\pi}^{\pi} e^{\tfrac ih F(r\cos\phi)} G(r\cos\phi) \,d\phi, \end{equation*} where $F(r)$ is a real-valued function with nonvanishing derivative, arise when constructing asymptotic solutions of problems with nonstandard characteristics such as the Cauchy problem with spatially localized initial data for the wave equation with velocity degenerating on the boundary of the domain; this problem describes the run-up of tsunami waves on a shallow beach in the linear approximation. The computation of the asymptotics of this integral as $h\to0$ encounters difficulties owing to the fact that the stationary points of the phase function $F(r\cos\phi)$ become degenerate for $r=0$. For this integral, we construct an asymptotics uniform with respect to $r$ in terms of the Bessel functions $\mathbf{J}_0(z)$ and $\mathbf{J}_1(z)$ of the first kind.
Keywords: rapidly oscillating integral, degeneration of stationary points, uniform asymptotics, Bessel function, wave equation.
@article{MZM_2017_102_6_a2,
     author = {S. Yu. Dobrokhotov and V. E. Nazaikinskii},
     title = {On the {Asymptotics} of a {Bessel-Type} {Integral} {Having} {Applications} in {Wave} {Run-Up} {Theory}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {828--835},
     publisher = {mathdoc},
     volume = {102},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a2/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
AU  - V. E. Nazaikinskii
TI  - On the Asymptotics of a Bessel-Type Integral Having Applications in Wave Run-Up Theory
JO  - Matematičeskie zametki
PY  - 2017
SP  - 828
EP  - 835
VL  - 102
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a2/
LA  - ru
ID  - MZM_2017_102_6_a2
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%A V. E. Nazaikinskii
%T On the Asymptotics of a Bessel-Type Integral Having Applications in Wave Run-Up Theory
%J Matematičeskie zametki
%D 2017
%P 828-835
%V 102
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a2/
%G ru
%F MZM_2017_102_6_a2
S. Yu. Dobrokhotov; V. E. Nazaikinskii. On the Asymptotics of a Bessel-Type Integral Having Applications in Wave Run-Up Theory. Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 828-835. http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a2/

[1] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Kharakteristiki s osobennostyami i granichnye znacheniya asimptoticheskogo resheniya zadachi Koshi dlya vyrozhdayuschegosya volnovogo uravneniya”, Matem. zametki, 100:5 (2016), 710–731 | DOI | MR | Zbl

[2] E. N. Pelinovskii, Gidrodinamika voln tsunami, IPF RAN, Nizhnii Novgorod, 1996

[3] J. J. Stoker, Water Waves. The Mathematical Theory with Applications, John Wiley and Sons, New York, 1958 | MR | Zbl

[4] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977 | MR | Zbl

[5] S. Yu. Dobrokhotov, G. N. Makrakis, V. E. Nazaikinskii, T. Ya. Tudorovskii, “Novye formuly dlya kanonicheskogo operatora Maslova v okrestnosti fokalnykh tochek i kaustik v dvumernykh kvaziklassicheskikh asimptotikakh”, TMF, 177:3 (2013), 355–386 | DOI | Zbl

[6] J. B. Keller, H. B. Keller, Water Wave Run-Up on a Beach, Research Report, Contract No. NONR-3828(00), Office of Naval Research, Department of the Navy, Washington, DC, 1964

[7] C. E. Synolakis, “On the roots of $f(z)=J_0(z)-iJ_1(z)$”, Quart. Appl. Math., 46:1 (1988), 105–107 | DOI | MR | Zbl

[8] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 1966 | MR | Zbl