Localized Asymptotic Solutions of the Linearized System of Magnetic Hydrodynamics
Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 807-815.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the asymptotic solutions of the Cauchy problem for the linearized system of equations of magnetic hydrodynamics with initial conditions localized near one point. It is shown that the structure of such solutions depends on whether the external magnetic field vanishes or not at this point. We discuss whether it is possible for the asymptotic solution to increase with time.
Keywords: equation of magnetic hydrodynamics, localized asymptotic solutions.
@article{MZM_2017_102_6_a0,
     author = {A. I. Allilueva and A. I. Shafarevich},
     title = {Localized {Asymptotic} {Solutions} of the {Linearized} {System} of {Magnetic} {Hydrodynamics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {807--815},
     publisher = {mathdoc},
     volume = {102},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a0/}
}
TY  - JOUR
AU  - A. I. Allilueva
AU  - A. I. Shafarevich
TI  - Localized Asymptotic Solutions of the Linearized System of Magnetic Hydrodynamics
JO  - Matematičeskie zametki
PY  - 2017
SP  - 807
EP  - 815
VL  - 102
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a0/
LA  - ru
ID  - MZM_2017_102_6_a0
ER  - 
%0 Journal Article
%A A. I. Allilueva
%A A. I. Shafarevich
%T Localized Asymptotic Solutions of the Linearized System of Magnetic Hydrodynamics
%J Matematičeskie zametki
%D 2017
%P 807-815
%V 102
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a0/
%G ru
%F MZM_2017_102_6_a0
A. I. Allilueva; A. I. Shafarevich. Localized Asymptotic Solutions of the Linearized System of Magnetic Hydrodynamics. Matematičeskie zametki, Tome 102 (2017) no. 6, pp. 807-815. http://geodesic.mathdoc.fr/item/MZM_2017_102_6_a0/

[1] H. K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids, Cambridge Univ. Press, Cambridge, 1978

[2] S. Friedlander, M. M. Vishik, “On stability and instability criteria for magnetohydrodynamics”, Chaos, 5:2 (1995), 416–423 | DOI | MR | Zbl

[3] V. V. Kucherenko, “Waves in the linearized system of magnetohydrodynamics”, Russ. J. Math. Phys., 17:3 (2010), 272–279 | DOI | MR | Zbl

[4] V. V. Kucherenko, A. Kryvko, “Interaction of Alfven waves in the linearized system of magnetohydrodynamics for an incompressible ideal fluid”, Russ. J. Math. Phys., 20:1 (2013), 56–67 | DOI | MR | Zbl

[5] S. Yu. Dobrokhotov, V. Martines Olive, “Lokalizovannye asimptoticheskie resheniya uravneniya magnitnogo dinamo v $ABC$-polyakh”, Matem. zametki, 54:4 (1993), 45–68 | MR | Zbl

[6] S. Yu. Dobrokhotov, A. I. Shafarevich, B. Tirozzi, “Localized wave and vortical solutions to linear hyperbolic systems and their application to linear shallow water equations”, Russ. J. Math. Phys., 15:2 (2008), 192–221 | DOI | MR | Zbl

[7] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Prokolotye lagranzhevy mnogoobraziya i asimptoticheskie resheniya lineinykh uravnenii voln na vode s lokalizovannymi nachalnymi usloviyami”, Matem. zametki, 101:6 (2017), 936–943 | DOI | MR

[8] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Propagation of a linear wave created by a spatially localized perturbation in a regular lattice and punctured Lagrangian manifolds”, Russ. J. Math. Phys., 24:1 (2017), 127–133 | DOI | MR

[9] V. P. Maslov, “Nestandartnye kharakteristiki v asimptoticheskikh zadachakh”, UMN, 38:6 (234) (1983), 3–36 | MR | Zbl

[10] A. I. Allilueva, A. I. Shafarevich, “Nestandartnye kharakteristiki i lokalizovannye asimptoticheskie resheniya linearizovannoi sistemy magnitnoi gidrodinamiki s malymi vyazkostyu i soprotivleniem”, TMF, 190:1 (2017), 191–204 | DOI | MR

[11] A. I. Allilueva, A. I. Shafarevich, “Asymptotic support of localized solutions of the linearized system of magnetohydrodynamics”, Russ. J. Math. Phys., 23:4 (2016), 425–430 | DOI | MR | Zbl

[12] A. I. Allilueva, A. I. Shafarevich, “Asymptotic solutions of linearized Navier–Stokes equations localized in small neighborhoods of curves and surfaces”, Russ. J. Math. Phys., 22:4 (2015), 421–426 | DOI | MR | Zbl

[13] O. N. Kirillov, Nonconservative Stability Problems of Modern Physics, De Gruyter Stud. Math. Phys., 14, De Gruyter, Berlin, 2013 | MR | Zbl