Essential Spectrum of Schr\"{o}dinger Operators
Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 761-774

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma$ be a simply connected unbounded $C^{2}$-hypersurface in $\mathbb{R}^{n}$ such that $\Gamma$ divides $\mathbb{R}^{n}$ into two unbounded domains $D^{\pm}$. We consider the essential spectrum of Schrödinger operators on $\mathbb{R}^{n}$ with surface $\delta_{\Gamma}$-interactions which can be written formally as $$ H_{\Gamma}=-\Delta+W-\alpha_{\Gamma}\delta_{\Gamma}, $$ where $-\Delta$ is the nonnegative Laplacian in $\mathbb{R}^{n}$, $W\in L^{\infty}(\mathbb{R}^{n})$ is a real-valued electric potential, $\delta_{\Gamma}$ is the Dirac $\delta$-function with the support on the hypersurface $\Gamma$ and $\alpha_{\Gamma}\in L^{\infty}(\Gamma)$ is a real-valued coupling coefficient depending of the points of $\Gamma$. We realize $H_{\Gamma}$ as an unbounded operator $\mathcal{A}_{\Gamma}$ in $L^{2}(\mathbb{R}^{n})$ generated by the Schrödinger operator $$ H_{\Gamma}=-\Delta+W\qquad \text{on}\quad \mathbb{R}^{n}\setminus\Gamma $$ and Robin-type transmission conditions on the hypersurface $\Gamma$. We give a complete description of the essential spectrum of $\mathcal{A}_{\Gamma}$ in terms of the limit operators generated by $A_{\Gamma}$ and the Robin transmission conditions.
Keywords: surface $\delta$-interaction, self-adjoint realization, Robin transmission conditions, limit operators, essential spectra.
@article{MZM_2017_102_5_a9,
     author = {V. S. Rabinovich},
     title = {Essential {Spectrum} of {Schr\"{o}dinger} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {761--774},
     publisher = {mathdoc},
     volume = {102},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a9/}
}
TY  - JOUR
AU  - V. S. Rabinovich
TI  - Essential Spectrum of Schr\"{o}dinger Operators
JO  - Matematičeskie zametki
PY  - 2017
SP  - 761
EP  - 774
VL  - 102
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a9/
LA  - ru
ID  - MZM_2017_102_5_a9
ER  - 
%0 Journal Article
%A V. S. Rabinovich
%T Essential Spectrum of Schr\"{o}dinger Operators
%J Matematičeskie zametki
%D 2017
%P 761-774
%V 102
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a9/
%G ru
%F MZM_2017_102_5_a9
V. S. Rabinovich. Essential Spectrum of Schr\"{o}dinger Operators. Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 761-774. http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a9/