Essential Spectrum of Schr\"{o}dinger Operators
Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 761-774.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma$ be a simply connected unbounded $C^{2}$-hypersurface in $\mathbb{R}^{n}$ such that $\Gamma$ divides $\mathbb{R}^{n}$ into two unbounded domains $D^{\pm}$. We consider the essential spectrum of Schrödinger operators on $\mathbb{R}^{n}$ with surface $\delta_{\Gamma}$-interactions which can be written formally as $$ H_{\Gamma}=-\Delta+W-\alpha_{\Gamma}\delta_{\Gamma}, $$ where $-\Delta$ is the nonnegative Laplacian in $\mathbb{R}^{n}$, $W\in L^{\infty}(\mathbb{R}^{n})$ is a real-valued electric potential, $\delta_{\Gamma}$ is the Dirac $\delta$-function with the support on the hypersurface $\Gamma$ and $\alpha_{\Gamma}\in L^{\infty}(\Gamma)$ is a real-valued coupling coefficient depending of the points of $\Gamma$. We realize $H_{\Gamma}$ as an unbounded operator $\mathcal{A}_{\Gamma}$ in $L^{2}(\mathbb{R}^{n})$ generated by the Schrödinger operator $$ H_{\Gamma}=-\Delta+W\qquad \text{on}\quad \mathbb{R}^{n}\setminus\Gamma $$ and Robin-type transmission conditions on the hypersurface $\Gamma$. We give a complete description of the essential spectrum of $\mathcal{A}_{\Gamma}$ in terms of the limit operators generated by $A_{\Gamma}$ and the Robin transmission conditions.
Keywords: surface $\delta$-interaction, self-adjoint realization, Robin transmission conditions, limit operators, essential spectra.
@article{MZM_2017_102_5_a9,
     author = {V. S. Rabinovich},
     title = {Essential {Spectrum} of {Schr\"{o}dinger} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {761--774},
     publisher = {mathdoc},
     volume = {102},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a9/}
}
TY  - JOUR
AU  - V. S. Rabinovich
TI  - Essential Spectrum of Schr\"{o}dinger Operators
JO  - Matematičeskie zametki
PY  - 2017
SP  - 761
EP  - 774
VL  - 102
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a9/
LA  - ru
ID  - MZM_2017_102_5_a9
ER  - 
%0 Journal Article
%A V. S. Rabinovich
%T Essential Spectrum of Schr\"{o}dinger Operators
%J Matematičeskie zametki
%D 2017
%P 761-774
%V 102
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a9/
%G ru
%F MZM_2017_102_5_a9
V. S. Rabinovich. Essential Spectrum of Schr\"{o}dinger Operators. Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 761-774. http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a9/

[1] F. A. Berezin, L. D. Faddeev, “Zamechanie ob operatorakh Shredingera s singulyarnymi potentsialami”, Dokl. AN SSSR, 137:5 (1961), 1011–1014 | MR | Zbl

[2] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, Second Editin, AMS Chelesea Publ., Providence, RI, 2004 | MR | Zbl

[3] S. Albeverio, P. Kurasov, Singular Pertrubations of Differential Operators. Solvable Schrödinger Type Operators, London Math. Soc. Lecture Note Ser., 271, Cambrige Univ. Press, Cambrige, 2000 | MR | Zbl

[4] B. S. Pavlov, “Teoriya rasshirenii i yavnoreshaemye modeli”, UMN, 42:6 (258) (1987), 99–131 | MR | Zbl

[5] J. F. Brasche, P. Exner, Yu. A. Kuperin, P. Šeba, “Schrödinger operators operators with singular interactions”, J. Math. Anal. Appl., 184:1 (1994), 112–139 | DOI | MR | Zbl

[6] J. Behrndt, P. Exner, V. Lotoreichik, “Essential spectrum of Schrödinger operators with $\delta$-interactions on the union of compact Lipschitz hypersurfaces”, Proc. Appl. Math. Mech., 13 (2013), 523–524 | DOI

[7] J. Behrndt, M. Langer, V. Lotoreichik, “Schrödinger operators with $\delta$ and $\delta$-potentials potentials supported on hypersurfaces surfaces”, Ann. Henri Poincaré, 14:2 (2013), 385–423 | DOI | MR | Zbl

[8] M. Sh. Birman, T. A. Suslina, R. G. Shterenberg, “Absolyutnaya nepreryvnost dvumernogo operatora Shredingera s delta-potentsialom, sosredotochennym na periodicheskoi sisteme krivykh”, Algebra i analiz, 12:6 (2000), 140–177 | MR | Zbl

[9] P. Exner, “Bound states of infinite curved polymer chains”, Lett. Math. Phys., 57:2 (2001), 87–96 | DOI | MR | Zbl

[10] P. Exner, K. Yoshitomi, “Band gap of the Schrödinger operator with a strong $\delta$-interaction on a periodic curve”, Ann. Henri Poincaré, 2:6 (2001), 1139–1158 | DOI | MR | Zbl

[11] P. Exner, S. Kondej, “Curvature-induced bound states for a interaction supported by a curve in $\mathbb{R}^{3}$”, Ann. Henri Poincaré, 3:5 (2002), 967–981 | DOI | MR | Zbl

[12] P. Exner, S. Kondej, “Bound states due to a strong interaction supported by a curved surface”, J. Phys. A, 36:2 (2003), 443–457 | DOI | MR | Zbl

[13] P. Exner, “Spectral properties of Schrödinger operators with a strongly attractive interaction supported by a surface”, Waves in Periodic and Random Media (South Hadley, MA, 2002), Contemp. Math., 339, Amer. Math. Soc., Providence, RI, 2003, 25–36 | MR | Zbl

[14] P. Exner., “An isoperimetric problem for leaky loops and related mean-chord inequalities”, J. Math. Phys., 46:6 (2005), 062105 | DOI | MR

[15] P. Exner, K. Yoshitomi, “Asymptotics of eigenvalues of the Schrödinger operator with a strong interaction on a loop”, J. Geom. Phys., 41:4 (2002), 344–358 | DOI | MR | Zbl

[16] T. A. Suslina, R. G. Shterenberg, “Absolyutnaya nepreryvnost spektra operatora Shredingera s potentsialom, sosredotochennym na periodicheskoi sisteme giperpoverkhnostei”, Algebra i analiz, 13:5 (2001), 197–240 | MR | Zbl

[17] V. Rabinovich, “Transmission problems for conical and quasi-conical at infinity domains”, Appl. Anal., 94:10 (2015), 2077–2094 | DOI | MR | Zbl

[18] V. Rabinovich, S. Roch, B. Silbermann, Limit Operators and Their Applications in Operator Theory, Oper. Theory Adv. Appl., 150, Birkhäuser, Basel, 2004 | MR | Zbl

[19] V. Rabinovich, “Essential spectrum of perturbed pseudodifferential operators. Applications to the Schrödinger, Klein–Gordon, and Dirac operators”, Russ. J. Math. Phys., 12:1 (2005), 62–80 | MR | Zbl

[20] V. S. Rabinovich, “On the essential spectrum of electromagnetic Schrödinger operators”, Complex Analysis and Dynamical Systems II, Contemp. Math., 382, Amer. Math. Soc., Providence, RI, 2005, 331–342 | DOI | MR | Zbl

[21] V. S. Rabinovich, S. Roch, “Essential spectrum and exponential decay estimates of solutions of elliptic systems of partial differential equations. Applications to Schrödinger and Dirac operators”, Georgian Math. J., 15:2 (2008), 333–351 | MR | Zbl

[22] V. S. Rabinovich, S. Roch, “The essential spectrum of Schrödinger operators on lattice”, J. Phys. A, 39:26 (2006), 8377–8394 | MR | Zbl

[23] V. S. Rabinovich, R. Castillo-Pérez, F. Urbano-Altamirano, “On the essential spectrum of quantum waveguides”, Math. Methods Appl. Sci., 36:7 (2013), 761–772 | DOI | MR | Zbl

[24] M. S. Agranovich, “Ellipticheskie operatory na zamknutykh mnogoobraziyakh”, Differentsialnye uravneniya s chastnymi proizvodnymi – 6, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 63, VINITI, M., 1990, 5–129 | MR | Zbl