Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_102_5_a6, author = {V. M. Kokilashvili and A. N. Meskhi and H. Rafeiro}, title = {Boundedness of {Sublinear} {Operators}}, journal = {Matemati\v{c}eskie zametki}, pages = {721--735}, publisher = {mathdoc}, volume = {102}, number = {5}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a6/} }
V. M. Kokilashvili; A. N. Meskhi; H. Rafeiro. Boundedness of Sublinear Operators. Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 721-735. http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a6/
[1] S. Shi, Z. Fu, F. Zhao, “Estimates for operators on weighted Morrey spaces and their applications to nondivergence elliptic equations”, J. Inequal. Appl., 2013 (2013), 390 | MR | Zbl
[2] R. Ch. Mustafayev, “On boundedness of sublinear operators in weighted Morrey spaces”, Azerb. J. Math., 2:1 (2012), 66–79 | MR | Zbl
[3] V. Kokilashvili, A. Meskhi, “The boundedness of sublinear operators in weighted Morrey spaces defined on spaces of homogeneous type”, J. Funct. Spaces Appl. (to appear)
[4] Y. Komori, S. Shirai, “Weighted Morrey spaces and a singular integral operator”, Math. Nachr., 282:2 (2009), 219–231 | DOI | MR | Zbl
[5] R. A. Macías, C. Segovia, “Lipschitz functions on spaces of homogeneous type”, Adv. in Math., 33 (1979), 257–270 | DOI | MR | Zbl
[6] J. O. Strömberg, A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math., 1381, Springer-Verlag, Berlin, 1989 | DOI | MR | Zbl
[7] R. R. Coifman, G. Weiss, Analyse harmonique non-commutative sur certains espaces homogénes, Lecture Notes in Math., 242, Springer-Verlag, Berlin, 1971 | DOI | MR | Zbl
[8] D. E. Edmunds, V. Kokilashvili, A. Meskhi, Bounded and Compact Integral Operators, Math. Appl., 543, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl
[9] Y. Han, D. Müller, D. Yang, “A theory of Besov and Triebel–Lizorkin spaces on metric measure spaces modeled on Carnot–Carathéodory spaces”, Abstr. Appl. Anal., 2008, 893409 | MR | Zbl
[10] T. Iwaniec, C. Sbordone, “On the integrability of the Jacobian under minimal hypotheses”, Arch. Rational Mech. Anal., 119:2 (1992), 129–143 | DOI | MR | Zbl
[11] L. Greco, T. Iwaniec, C. Sbordone, “Inverting the $p$-harmonic operator”, Manuscripta Math., 92:2 (1997), 249–258 | DOI | MR | Zbl
[12] C. Capone, A. Fiorenza, “On small Lebesgue spaces”, J. Funct. Spaces Appl., 3:1 (2005), 73–89 | DOI | MR | Zbl
[13] V. Kokilashvili, Weighted Problems for Operators of Harmonic Analysis in Some Banach Function Spaces, Lecture Course of Summer School and Workshop “Harmonic Analysis and Related Topics”, June 21–25, 2010, Lisbon http://www.math.ist.utl.pt/~hart2010/kokilashvili.pdf
[14] G. Di Fratta, A. Fiorenza, “A direct approach to the duality of grand and small Lebesgue spaces”, Nonlinear Anal. Theory, Methods Appl., 70:7 (2009), 2582–2592 | DOI | MR | Zbl
[15] A. Fiorenza, “Duality and reflexivity in grand Lebesgue spaces”, Collect. Math., 51:2 (2000), 131–148 | MR | Zbl
[16] A. Fiorenza, B. Gupta, P. Jain, “The maximal theorem in weighted grand Lebesgue spaces”, Studia Math., 188:2 (2008), 123–133 | DOI | MR | Zbl
[17] A. Fiorenza, G. E. Karadzhov, “Grand and small Lebesgue spaces and their analogs”, Z. Anal. Anwendungen, 23:4 (2004), 657–681 | MR | Zbl
[18] A. Fiorenza, J. M. Rakotoson, “Petits espaces de Lebesgue et quelques applications”, C. R. Math. Acad. Sci. Paris, 334:1 (2002), 23–26 | MR | Zbl
[19] S. G. Samko, S. M. Umarkhadzhiev, “On Iwaniec–Sbordone spaces on sets which may have infinite measure”, Azerb. J. Math., 1:1 (2010), 67–84 | MR | Zbl
[20] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral Operators in Non-Standard Function Spaces. Vol. 2. Variable Exponent Hölder, Morrey–Campanato and Grand Spaces, Oper. Theory Adv. Appl., 249, Birkäuser, Heidelberg, 2016 | MR | Zbl
[21] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43:1 (1938), 126–166 | DOI | MR | Zbl
[22] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Non-Linear Elliptic Systems, Ann. of Math. Stud., 105, Princeton Univ. Press, Princeton, 1983 | MR | Zbl
[23] A. Kufner, O. John, S. Fučik, Function Spaces, Noordhoff International Publ., Leyden, 1977 | MR | Zbl
[24] H. Rafeiro, N. Samko, S. Samko, “Morrey–Campanato spaces: an overview”, Operator Theory, Pseudo-Differential Equations, and Mathematical Physics, Oper. Theory Adv. Appl., 228, Birkhäuser, Basel, 2013 | MR | Zbl
[25] A. Meskhi, “Maximal functions and singular integrals in Morrey spaces associated with grand Lebesgue spaces”, Proc. A. Razmadze Math. Inst., 151 (2009), 139–143 | MR | Zbl
[26] A. Meskhi, “Maximal functions, potentials and singular integrals in grand Morrey spaces”, Complex Var. Elliptic Equ., 56:10-11 (2011), 1003–1019 | DOI | MR | Zbl
[27] H. Rafeiro, “A note on boundedness of operators in grand grand Morrey spaces”, Advances in Harmonic Analysis and Operator Theory, Oper. Theory Adv. Appl., 229, Birkhäuser, Basel, 2013, 349–356 | MR | Zbl
[28] B. Muckehoupt, R. L. Wheeden, “Weighted norm inequalities for fractional integrals”, Trans. Amer. Math. Soc., 192 (1974), 261–274 | DOI | MR | Zbl
[29] A. Meskhi, “Criteria for the boundedness of potential operators in grand Lebesgue spaces”, Proc. A. Razmadze Math. Inst., 169 (2015), 119–132 | MR | Zbl
[30] V. Kokilashvili, A. Meskhi, “Potentials with product kernels in grand Lebesgue spaces: one-weight criteria”, Lith. Math. J., 53:1 (2013), 27–39 | DOI | MR | Zbl