Boundedness of Sublinear Operators
Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 721-735.

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundedness of sublinear integral operators in grand Morrey spaces defined by means of measures generated by the Muckenhoupt weights is established. The operators under consideration involve operators of Harmonic Analysis such as Hardy–Littlewood and fractional maximal operators, Calderón–Zygmund operators, potential operators etc.
Keywords: sublinear operators, weighted Morrey spaces, spaces of homogeneous type, weighted inequality, singular integrals, fractional integrals.
@article{MZM_2017_102_5_a6,
     author = {V. M. Kokilashvili and A. N. Meskhi and H. Rafeiro},
     title = {Boundedness of {Sublinear} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {721--735},
     publisher = {mathdoc},
     volume = {102},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a6/}
}
TY  - JOUR
AU  - V. M. Kokilashvili
AU  - A. N. Meskhi
AU  - H. Rafeiro
TI  - Boundedness of Sublinear Operators
JO  - Matematičeskie zametki
PY  - 2017
SP  - 721
EP  - 735
VL  - 102
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a6/
LA  - ru
ID  - MZM_2017_102_5_a6
ER  - 
%0 Journal Article
%A V. M. Kokilashvili
%A A. N. Meskhi
%A H. Rafeiro
%T Boundedness of Sublinear Operators
%J Matematičeskie zametki
%D 2017
%P 721-735
%V 102
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a6/
%G ru
%F MZM_2017_102_5_a6
V. M. Kokilashvili; A. N. Meskhi; H. Rafeiro. Boundedness of Sublinear Operators. Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 721-735. http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a6/

[1] S. Shi, Z. Fu, F. Zhao, “Estimates for operators on weighted Morrey spaces and their applications to nondivergence elliptic equations”, J. Inequal. Appl., 2013 (2013), 390 | MR | Zbl

[2] R. Ch. Mustafayev, “On boundedness of sublinear operators in weighted Morrey spaces”, Azerb. J. Math., 2:1 (2012), 66–79 | MR | Zbl

[3] V. Kokilashvili, A. Meskhi, “The boundedness of sublinear operators in weighted Morrey spaces defined on spaces of homogeneous type”, J. Funct. Spaces Appl. (to appear)

[4] Y. Komori, S. Shirai, “Weighted Morrey spaces and a singular integral operator”, Math. Nachr., 282:2 (2009), 219–231 | DOI | MR | Zbl

[5] R. A. Macías, C. Segovia, “Lipschitz functions on spaces of homogeneous type”, Adv. in Math., 33 (1979), 257–270 | DOI | MR | Zbl

[6] J. O. Strömberg, A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math., 1381, Springer-Verlag, Berlin, 1989 | DOI | MR | Zbl

[7] R. R. Coifman, G. Weiss, Analyse harmonique non-commutative sur certains espaces homogénes, Lecture Notes in Math., 242, Springer-Verlag, Berlin, 1971 | DOI | MR | Zbl

[8] D. E. Edmunds, V. Kokilashvili, A. Meskhi, Bounded and Compact Integral Operators, Math. Appl., 543, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl

[9] Y. Han, D. Müller, D. Yang, “A theory of Besov and Triebel–Lizorkin spaces on metric measure spaces modeled on Carnot–Carathéodory spaces”, Abstr. Appl. Anal., 2008, 893409 | MR | Zbl

[10] T. Iwaniec, C. Sbordone, “On the integrability of the Jacobian under minimal hypotheses”, Arch. Rational Mech. Anal., 119:2 (1992), 129–143 | DOI | MR | Zbl

[11] L. Greco, T. Iwaniec, C. Sbordone, “Inverting the $p$-harmonic operator”, Manuscripta Math., 92:2 (1997), 249–258 | DOI | MR | Zbl

[12] C. Capone, A. Fiorenza, “On small Lebesgue spaces”, J. Funct. Spaces Appl., 3:1 (2005), 73–89 | DOI | MR | Zbl

[13] V. Kokilashvili, Weighted Problems for Operators of Harmonic Analysis in Some Banach Function Spaces, Lecture Course of Summer School and Workshop “Harmonic Analysis and Related Topics”, June 21–25, 2010, Lisbon http://www.math.ist.utl.pt/~hart2010/kokilashvili.pdf

[14] G. Di Fratta, A. Fiorenza, “A direct approach to the duality of grand and small Lebesgue spaces”, Nonlinear Anal. Theory, Methods Appl., 70:7 (2009), 2582–2592 | DOI | MR | Zbl

[15] A. Fiorenza, “Duality and reflexivity in grand Lebesgue spaces”, Collect. Math., 51:2 (2000), 131–148 | MR | Zbl

[16] A. Fiorenza, B. Gupta, P. Jain, “The maximal theorem in weighted grand Lebesgue spaces”, Studia Math., 188:2 (2008), 123–133 | DOI | MR | Zbl

[17] A. Fiorenza, G. E. Karadzhov, “Grand and small Lebesgue spaces and their analogs”, Z. Anal. Anwendungen, 23:4 (2004), 657–681 | MR | Zbl

[18] A. Fiorenza, J. M. Rakotoson, “Petits espaces de Lebesgue et quelques applications”, C. R. Math. Acad. Sci. Paris, 334:1 (2002), 23–26 | MR | Zbl

[19] S. G. Samko, S. M. Umarkhadzhiev, “On Iwaniec–Sbordone spaces on sets which may have infinite measure”, Azerb. J. Math., 1:1 (2010), 67–84 | MR | Zbl

[20] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral Operators in Non-Standard Function Spaces. Vol. 2. Variable Exponent Hölder, Morrey–Campanato and Grand Spaces, Oper. Theory Adv. Appl., 249, Birkäuser, Heidelberg, 2016 | MR | Zbl

[21] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43:1 (1938), 126–166 | DOI | MR | Zbl

[22] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Non-Linear Elliptic Systems, Ann. of Math. Stud., 105, Princeton Univ. Press, Princeton, 1983 | MR | Zbl

[23] A. Kufner, O. John, S. Fučik, Function Spaces, Noordhoff International Publ., Leyden, 1977 | MR | Zbl

[24] H. Rafeiro, N. Samko, S. Samko, “Morrey–Campanato spaces: an overview”, Operator Theory, Pseudo-Differential Equations, and Mathematical Physics, Oper. Theory Adv. Appl., 228, Birkhäuser, Basel, 2013 | MR | Zbl

[25] A. Meskhi, “Maximal functions and singular integrals in Morrey spaces associated with grand Lebesgue spaces”, Proc. A. Razmadze Math. Inst., 151 (2009), 139–143 | MR | Zbl

[26] A. Meskhi, “Maximal functions, potentials and singular integrals in grand Morrey spaces”, Complex Var. Elliptic Equ., 56:10-11 (2011), 1003–1019 | DOI | MR | Zbl

[27] H. Rafeiro, “A note on boundedness of operators in grand grand Morrey spaces”, Advances in Harmonic Analysis and Operator Theory, Oper. Theory Adv. Appl., 229, Birkhäuser, Basel, 2013, 349–356 | MR | Zbl

[28] B. Muckehoupt, R. L. Wheeden, “Weighted norm inequalities for fractional integrals”, Trans. Amer. Math. Soc., 192 (1974), 261–274 | DOI | MR | Zbl

[29] A. Meskhi, “Criteria for the boundedness of potential operators in grand Lebesgue spaces”, Proc. A. Razmadze Math. Inst., 169 (2015), 119–132 | MR | Zbl

[30] V. Kokilashvili, A. Meskhi, “Potentials with product kernels in grand Lebesgue spaces: one-weight criteria”, Lith. Math. J., 53:1 (2013), 27–39 | DOI | MR | Zbl