Homogenization of a Nonstationary Model Equation
Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 700-720.

Voir la notice de l'article provenant de la source Math-Net.Ru

In $L_2(\mathbb R^3;\mathbb C^3)$, we consider a self-adjoint operator $\mathscr L_\varepsilon$, $\varepsilon >0$, generated by the differential expression $\operatorname{curl}\eta(\mathbf x /\varepsilon)^{-1}\operatorname{curl} -\nabla\nu(\mathbf x/\varepsilon)\operatorname{div}$. Here the matrix function $\eta(\mathbf x)$ with real entries and the real function $\nu(\mathbf x)$ are periodic with respect to some lattice, are positive definite, and are bounded. We study the behavior of the operators $\cos(\tau\mathscr L_\varepsilon^{1/2})$ and $\mathscr L_\varepsilon^{-1/2} \sin(\tau\mathscr L_\varepsilon^{1/2})$ for $\tau\in\mathbb R$ and small $\varepsilon$. It is shown that these operators converge to $\cos(\tau(\mathscr L^0)^{1/2})$ and $(\mathscr L^0)^{-1/2}\sin(\tau(\mathscr L^0)^{1/2})$, respectively, in the norm of the operators acting from the Sobolev space $H^s$ (with a suitable $s$) to $L_2$. Here $\mathscr L^0$ is an effective operator with constant coefficients. Error estimates are obtained and the sharpness of the result with respect to the type of operator norm is studied. The results are used for homogenizing the Cauchy problem for the model hyperbolic equation $\partial^2_\tau\mathbf v_\varepsilon =-\mathscr L_\varepsilon\mathbf v_\varepsilon$, $\operatorname{div}\mathbf v_\varepsilon=0$, appearing in electrodynamics. We study the application to a nonstationary Maxwell system for the case in which the magnetic permeability is equal to $1$ and the dielectric permittivity is given by the matrix $\eta(\mathbf x/\varepsilon)$.
Keywords: periodic differential operator, homogenization, operator error estimate, nonstationary Maxwell system.
@article{MZM_2017_102_5_a5,
     author = {M. Dorodnyi and T. A. Suslina},
     title = {Homogenization of a {Nonstationary} {Model} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {700--720},
     publisher = {mathdoc},
     volume = {102},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a5/}
}
TY  - JOUR
AU  - M. Dorodnyi
AU  - T. A. Suslina
TI  - Homogenization of a Nonstationary Model Equation
JO  - Matematičeskie zametki
PY  - 2017
SP  - 700
EP  - 720
VL  - 102
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a5/
LA  - ru
ID  - MZM_2017_102_5_a5
ER  - 
%0 Journal Article
%A M. Dorodnyi
%A T. A. Suslina
%T Homogenization of a Nonstationary Model Equation
%J Matematičeskie zametki
%D 2017
%P 700-720
%V 102
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a5/
%G ru
%F MZM_2017_102_5_a5
M. Dorodnyi; T. A. Suslina. Homogenization of a Nonstationary Model Equation. Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 700-720. http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a5/

[1] A. Bensoussan, J.-L. Lions , G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Stud. Math. Appl., 5, North-Holland Publ., Amsterdam, 1978 | MR | Zbl

[2] N. S. Bakhvalov, G. P. Panasenko, Osrednenie protsessov v periodicheskikh sredakh. Matematicheskie zadachi mekhaniki kompozitsionnykh materialov, Nauka, M., 1984 | MR | Zbl

[3] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993 | MR | Zbl

[4] M. Sh. Birman, T. A. Suslina, “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl

[5] M. Sh. Birman, T. A. Suslina, “Usrednenie periodicheskikh ellipticheskikh differentsialnykh operatorov s uchetom korrektora”, Algebra i analiz, 17:6 (2005), 1–104 | MR | Zbl

[6] M. Sh. Birman, T. A. Suslina, “Usrednenie periodicheskikh differentsialnykh operatorov s uchetom korrektora. Priblizhenie reshenii v klasse Soboleva $H^1(\mathbb R^d)$”, Algebra i analiz, 18:6 (2006), 1–130 | MR | Zbl

[7] M. Sh. Birman, T. A. Suslina, “Operatornye otsenki pogreshnosti pri usrednenii nestatsionarnykh periodicheskikh uravnenii”, Algebra i analiz, 20:6 (2008), 30–107 | MR | Zbl

[8] T. A. Suslina, “Ob usrednenii periodicheskikh parabolicheskikh sistem”, Funkts. analiz i ego pril., 38:4 (2004), 86–90 | DOI | MR | Zbl

[9] V. V. Zhikov, “Ob operatornykh otsenkakh v teorii usredneniya”, Dokl. AN, 403:3 (2005), 305–308 | MR | Zbl

[10] V. V. Zhikov, S. E. Pastukhova, “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl

[11] V. V. Zhikov, S. E. Pastukhova, “Estimates of homogenization for a parabolic equation with periodic coefficients”, Russ. J. Math. Phys., 13:2 (2006), 224–237 | DOI | MR | Zbl

[12] V. V. Zhikov, S. E. Pastukhova, “Ob operatornykh otsenkakh v teorii usredneniya”, UMN, 71:3 (429) (2016), 27–122 | DOI | MR | Zbl

[13] T. A. Suslina, “Usrednenie uravnenii tipa Shredingera”, Funkts. analiz i ego pril., 50:3 (2016), 90–96 | DOI | Zbl

[14] T. A. Suslina, “Spectral approach to homogenization of nonstationary Schrödinger-type equations”, J. Math. Anal. Appl., 446:2 (2017), 1466–1523 | DOI | MR | Zbl

[15] Yu. M. Meshkova, On Operator Error Estimates for Homogenization of Hyperbolic Systems with Periodic Coeffcients, 2017, arXiv: 1705.02531v3

[16] M. A. Dorodnyi, T. A. Suslina, “Usrednenie giperbolicheskikh uravnenii”, Funkts. analiz i ego pril., 50:4 (2016), 91–96 | DOI | Zbl

[17] M. A. Dorodnyi, T. A. Suslina, “Spectral Approach to Homogenization of Hyperbolic Equations with Periodic Coefficients”, arXiv: 1708.00859

[18] T. A. Suslina, “Usrednenie statsionarnoi periodicheskoi sistemy Maksvella”, Algebra i analiz, 16:5 (2004), 162–244 | MR | Zbl

[19] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[20] V. V. Zhikov, “Ob otsenkakh dlya usrednennoi matritsy i usrednennogo tenzora”, UMN, 46:3 (279) (1991), 49–109 | MR | Zbl