Multipliers in Spaces of Bessel Potentials:
Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 684-699
Voir la notice de l'article provenant de la source Math-Net.Ru
The aim of the paper
is to study spaces of multipliers acting from
the Bessel potential space $H^s_p(\mathbb{R}^n)$
to the other Bessel potential space $H^t_q(\mathbb{R}^n)$.
We obtain conditions
ensuring the equivalence of uniform
and
standard multiplier norms
on the space of multipliers
$$
M[H^s_p(\mathbb{R}^n) \to H^t_q(\mathbb{R}^n)]\qquad
\text{for}\quad s,t \in \mathbb{R},\quad p,q > 1.
$$
In the case
$$
p,q > 1,\qquad
p \le q,\qquad s > \frac np,\qquad
t \ge 0,\qquad s-\frac np \ge t-\frac nq,
$$
the space $M[H^s_p(\mathbb{R}^n) \to H^t_q(\mathbb{R}^n)]$
can be described explicitly.
Namely,
we prove in this paper that
the latter space coincides
with the space $H^t_{q,\mathrm{unif}}(\mathbb{R}^n)$
of uniformly localized Bessel potentials introduced by Strichartz.
It is also proved that
if both smoothness indices $s$
and $t$
are nonnegative,
then
such a description
is possible
only
for
the given values of the indices.
Keywords:
Bessel potential space, multiplier,
Strichartz theorem, uniform localization principle.
@article{MZM_2017_102_5_a4,
author = {A. A. Belyaev and A. A. Shkalikov},
title = {Multipliers in {Spaces} of {Bessel} {Potentials:}},
journal = {Matemati\v{c}eskie zametki},
pages = {684--699},
publisher = {mathdoc},
volume = {102},
number = {5},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a4/}
}
A. A. Belyaev; A. A. Shkalikov. Multipliers in Spaces of Bessel Potentials:. Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 684-699. http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a4/