Multipliers in Spaces of Bessel Potentials:
Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 684-699

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the paper is to study spaces of multipliers acting from the Bessel potential space $H^s_p(\mathbb{R}^n)$ to the other Bessel potential space $H^t_q(\mathbb{R}^n)$. We obtain conditions ensuring the equivalence of uniform and standard multiplier norms on the space of multipliers $$ M[H^s_p(\mathbb{R}^n) \to H^t_q(\mathbb{R}^n)]\qquad \text{for}\quad s,t \in \mathbb{R},\quad p,q > 1. $$ In the case $$ p,q > 1,\qquad p \le q,\qquad s > \frac np,\qquad t \ge 0,\qquad s-\frac np \ge t-\frac nq, $$ the space $M[H^s_p(\mathbb{R}^n) \to H^t_q(\mathbb{R}^n)]$ can be described explicitly. Namely, we prove in this paper that the latter space coincides with the space $H^t_{q,\mathrm{unif}}(\mathbb{R}^n)$ of uniformly localized Bessel potentials introduced by Strichartz. It is also proved that if both smoothness indices $s$ and $t$ are nonnegative, then such a description is possible only for the given values of the indices.
Keywords: Bessel potential space, multiplier, Strichartz theorem, uniform localization principle.
@article{MZM_2017_102_5_a4,
     author = {A. A. Belyaev and A. A. Shkalikov},
     title = {Multipliers in {Spaces} of {Bessel} {Potentials:}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {684--699},
     publisher = {mathdoc},
     volume = {102},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a4/}
}
TY  - JOUR
AU  - A. A. Belyaev
AU  - A. A. Shkalikov
TI  - Multipliers in Spaces of Bessel Potentials:
JO  - Matematičeskie zametki
PY  - 2017
SP  - 684
EP  - 699
VL  - 102
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a4/
LA  - ru
ID  - MZM_2017_102_5_a4
ER  - 
%0 Journal Article
%A A. A. Belyaev
%A A. A. Shkalikov
%T Multipliers in Spaces of Bessel Potentials:
%J Matematičeskie zametki
%D 2017
%P 684-699
%V 102
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a4/
%G ru
%F MZM_2017_102_5_a4
A. A. Belyaev; A. A. Shkalikov. Multipliers in Spaces of Bessel Potentials:. Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 684-699. http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a4/