Integral Operators with Homogeneous Kernels
Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 775-788.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions on the kernel and the grandizer that ensure the boundedness of integral operators with homogeneous kernels in grand Lebesgue spaces on $\mathbb R^n$ as well as an upper bound for their norms are obtained. For some classes of grandizers, necessary conditions and lower bounds for the norm of these operators are also obtained. In the case of a radial kernel, stronger estimates are established in terms of one-dimensional grand norms of spherical means of the function. A sufficient condition for the boundedness of the operator with homogeneous kernel in classical Lebesgue spaces with arbitrary radial weight is obtained. As an application, boundedness in grand spaces of the one-dimensional operator of fractional Riemann–Liouville integration and of a multidimensional Hilbert-type operator is studied.
Keywords: integral operator with homogeneous kernel, grand Lebesgue space, two-sided estimate, spherical mean, Hilbert-type operator, fractional integration operator.
@article{MZM_2017_102_5_a10,
     author = {S. M. Umarkhadzhiev},
     title = {Integral {Operators} with {Homogeneous} {Kernels}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {775--788},
     publisher = {mathdoc},
     volume = {102},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a10/}
}
TY  - JOUR
AU  - S. M. Umarkhadzhiev
TI  - Integral Operators with Homogeneous Kernels
JO  - Matematičeskie zametki
PY  - 2017
SP  - 775
EP  - 788
VL  - 102
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a10/
LA  - ru
ID  - MZM_2017_102_5_a10
ER  - 
%0 Journal Article
%A S. M. Umarkhadzhiev
%T Integral Operators with Homogeneous Kernels
%J Matematičeskie zametki
%D 2017
%P 775-788
%V 102
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a10/
%G ru
%F MZM_2017_102_5_a10
S. M. Umarkhadzhiev. Integral Operators with Homogeneous Kernels. Matematičeskie zametki, Tome 102 (2017) no. 5, pp. 775-788. http://geodesic.mathdoc.fr/item/MZM_2017_102_5_a10/

[1] T. Iwaniec, C. Sbordone, “On the integrability of the Jacobian under minimal hypotheses”, Arch. Rational Mech. Anal., 119:2 (1992), 129–143 | DOI | MR | Zbl

[2] G. Di Fratta, A. Fiorenza, “A direct approach to the duality of grand and small Lebesgue spaces”, Nonlinear Anal. Theory, Methods Appl., 70:7 (2009), 2582–2592 | DOI | MR | Zbl

[3] A. Fiorenza, “Duality and reflexivity in grand Lebesgue spaces”, Collect. Math., 51:2 (2000), 131–148 | MR | Zbl

[4] A. Fiorenza, B. Gupta, P. Jain, “The maximal theorem in weighted grand Lebesgue spaces”, Studia Math., 188:2 (2008), 123–133 | DOI | MR | Zbl

[5] A. Fiorenza, G. E. Karadzhov, “Grand and small Lebesgue spaces and their analogs”, Z. Anal. Anwendungen, 23:4 (2004), 657–681 | MR | Zbl

[6] A. Fiorenza, J. M. Rakotoson, “Petits espaces de Lebesgue et quelques applications”, C. R. Math. Acad. Sci. Paris, 334:1 (2002), 23–26 | DOI | MR | Zbl

[7] L. Greco, T. Iwaniec, C. Sbordone, “Inverting the $p$-harmonic operator”, Manuscripta Math., 92:2 (1997), 249–258 | DOI | MR | Zbl

[8] V. Kokilashvili, “Boundedness criterion for the Cauchy singular integral operator in weighted grand Lebesgue spaces and application to the Riemann problem”, Proc. A. Razmadze Math. Inst., 151 (2009), 129–133 | MR | Zbl

[9] V. Kokilashvili, “The Riemann boundary value problem analytic functions in the frame of grand $L^p$ spaces”, Bull. Georgian Natl. Acad. Sci. (N.S.), 4:1 (2010), 5–7 | MR | Zbl

[10] V. Kokilashvili, A. Meskhi, “A note on the boundedness of the Hilbert transform in weighted grand Lebesgue spaces”, Georgian Math. J., 16:3 (2009), 547–551 | MR | Zbl

[11] A. Meskhi, “Weighted criteria for the Hardy transform under the $B_p$ condition in grand Lebesgue spaces and some applications”, J. Math. Sci. (N.Y.), 178:6 (2011), 622–636 | DOI | MR | Zbl

[12] V. Kokilashvili', “Boundedness criteria for singular integrals in weighted Grand Lebesgue spaces”, J. Math. Sci. (N.Y.), 170:1 (2010), 20–33 | DOI | MR | Zbl

[13] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral Operators in Non-Standard Function Spaces. Vol. 1. Variable Exponent Lebesgue and Amalgam Spaces, Oper. Theory Adv. Appl., 248, Birkäuser, Heidelberg, 2015 | MR | Zbl

[14] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral Operators in Non-Standard Function Spaces. Vol. 2. Variable Exponent Hölder, Morrey–Campanato and Grand Spaces, Oper. Theory Adv. Appl., 249, Birkäuser, Heidelberg, 2016 | MR | Zbl

[15] S. G. Samko, S. M. Umarkhadzhiev, “On Iwaniec–Sbordone spaces on sets which may have infinite measure”, Azerb. J. Math., 1:1 (2011), 67–84 | MR | Zbl

[16] S. G. Samko, S. M. Umarkhadzhiev, “On Iwaniec-Sbordone spaces on sets which may have infinite measure: addendum”, Azerb. J. Math., 1:2 (2011), 143–144 | MR | Zbl

[17] S. M. Umarkhadzhiev, “Obobschenie ponyatiya grand-prostranstva Lebega”, Izv. vuzov. Matem., 2014, no. 4, 42–51

[18] S. M. Umarkhadzhiev, “Ogranichennost lineinykh operatorov v vesovykh obobschennykh grand-prostranstvakh Lebega”, Vestn. AN Chechenskoi Respubliki, 19:2 (2013), 5–9

[19] S. M. Umarkhadzhiev, “The boundedness of the Riesz potential operator from generalized grand Lebesgue spaces to generalized grand Morrey spaces”, Operator Theory, Operator Algebras and Applications, Oper. Theory Adv. Appl., 242, Birkhäuser, Basel, 2014, 363–373 | MR | Zbl

[20] S. M. Umarkhadzhiev, “Ogranichennost potentsiala Rissa v vesovykh obobschennykh grand-prostranstvakh Lebega”, Vladikavk. matem. zhurn., 16:2 (2014), 62–68 | Zbl

[21] S. M. Umarkhadzhiev, “Plotnost prostranstva Lizorkina v grand-prostranstvakh Lebega”, Vladikavk. matem. zhurn., 17:3 (2015), 75–83 | MR

[22] S. Samko, S. Umarkhadzhiev, “Riesz fractional integrals in grand Lebesgue spaces on $\mathbb R^n$”, Fract. Calc. Appl. Anal., 19:3 (2016), 608–624 | DOI | MR | Zbl

[23] S. G. Samko, Hypersingular Integrals and Their Applications, Anal. Methods Spec. Funct., 5, Taylor Francis, London, 2002 | MR | Zbl

[24] S. Samko, S. Umarkhadzhiev, “On grand Lebesgue spaces on sets of infinite measure”, Math. Nachr., 290:5-6 (2017), 913–919 | DOI | MR | Zbl

[25] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR | Zbl

[26] N. Karapetiants, S. Samko, Equations with Involutive Operators, Birkhäuser, Boston, MA, 2001 | MR | Zbl

[27] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934 | MR | Zbl

[28] O. G. Avsyankin, E. I. Miroshnikova, “Mnogomernye integralnye operatory s odnorodnymi yadrami v $L_p$-prostranstvakh s polumultiplikativnym vesom”, Izv. vuzov. Sev.-Kavk. region. Estestv. nauki, 2010, no. 5, 5–7 | Zbl