The Kraus Inequality for Multivalent Functions
Matematičeskie zametki, Tome 102 (2017) no. 4, pp. 559-564.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a holomorphic function $f,f'(0)\ne 0$, in the unit disk $U$, we establish a geometric constraint on the image $f(U)$ for which the classical Kraus inequality $|S_{f}(0)|\le 6$ holds; earlier, it was known only in the case of the conformal mapping of $f$. Here $S_{f}(0)$ is the Schwarzian derivative of the function $f$ calculated at the point $z=0$. The proof is based on the strengthened version of Lavrentev's theorem on the extremal decomposition of the Riemann sphere into two disjoint domains.
Keywords: Schwarzian derivative, holomorphic function, condenser capacity.
@article{MZM_2017_102_4_a7,
     author = {V. N. Dubinin},
     title = {The {Kraus} {Inequality} for {Multivalent} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {559--564},
     publisher = {mathdoc},
     volume = {102},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a7/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - The Kraus Inequality for Multivalent Functions
JO  - Matematičeskie zametki
PY  - 2017
SP  - 559
EP  - 564
VL  - 102
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a7/
LA  - ru
ID  - MZM_2017_102_4_a7
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T The Kraus Inequality for Multivalent Functions
%J Matematičeskie zametki
%D 2017
%P 559-564
%V 102
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a7/
%G ru
%F MZM_2017_102_4_a7
V. N. Dubinin. The Kraus Inequality for Multivalent Functions. Matematičeskie zametki, Tome 102 (2017) no. 4, pp. 559-564. http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a7/

[1] Z. Nehari, Conformal Mapping, McGraw-Hill, New York, 1952 | MR | Zbl

[2] O. Lehto, Univalent Functions and Teichmüller Spaces, Grad. Texts in Math., 109, Springer, New York, 1987 | DOI | MR | Zbl

[3] B. Osgood, “Old and new on the Schwarzian derivative”, Quasiconformal Mappings and Analysis, Springer, New York, 1998, 275–308 | MR | Zbl

[4] M. Chuaqui, P. Duren, W. Ma, D. Mejía, D. Minda, B. Osgood, “Schwarzian norms and two-point distortion”, Pacific J. Math., 254:1 (2011), 101–116 | DOI | MR | Zbl

[5] W. Kraus, “Über den Zusammenhang einiger Characteristiken eines einfach zusammenhangenden Bereiches mit der Kreisabbildung”, Mitt. Math. Semin. Univ. Giessen, 21 (1932), 1–28 | Zbl

[6] V. N. Dubinin, “Geometricheskie otsenki proizvodnoi Shvartsa”, UMN (to appear)

[7] G. V. Kuzmina, “Metody geometricheskoi teorii funktsii. I”, Algebra i analiz, 9:3 (1997), 41–103 | MR | Zbl

[8] A. K. Bakhtin, G. P. Bakhtina, Yu. B. Zelinskii, Topologo-algebraicheskie struktury i geometricheskie metody v kompleksnom analize, Tr. In-ta matem. NAN Ukrainy, 73, In-t matem. NAN Ukrainy, Kiev, 2008 | MR | Zbl

[9] V. N. Dubinin, Condenser Capacities and Symmetrization in Geometric Function Theory, Birkhäuser, Basel, 2014 | MR | Zbl

[10] A. Gurvits, R. Kurant, Teoriya funktsii, Nauka, M., 1968 | MR