Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_102_4_a7, author = {V. N. Dubinin}, title = {The {Kraus} {Inequality} for {Multivalent} {Functions}}, journal = {Matemati\v{c}eskie zametki}, pages = {559--564}, publisher = {mathdoc}, volume = {102}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a7/} }
V. N. Dubinin. The Kraus Inequality for Multivalent Functions. Matematičeskie zametki, Tome 102 (2017) no. 4, pp. 559-564. http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a7/
[1] Z. Nehari, Conformal Mapping, McGraw-Hill, New York, 1952 | MR | Zbl
[2] O. Lehto, Univalent Functions and Teichmüller Spaces, Grad. Texts in Math., 109, Springer, New York, 1987 | DOI | MR | Zbl
[3] B. Osgood, “Old and new on the Schwarzian derivative”, Quasiconformal Mappings and Analysis, Springer, New York, 1998, 275–308 | MR | Zbl
[4] M. Chuaqui, P. Duren, W. Ma, D. Mejía, D. Minda, B. Osgood, “Schwarzian norms and two-point distortion”, Pacific J. Math., 254:1 (2011), 101–116 | DOI | MR | Zbl
[5] W. Kraus, “Über den Zusammenhang einiger Characteristiken eines einfach zusammenhangenden Bereiches mit der Kreisabbildung”, Mitt. Math. Semin. Univ. Giessen, 21 (1932), 1–28 | Zbl
[6] V. N. Dubinin, “Geometricheskie otsenki proizvodnoi Shvartsa”, UMN (to appear)
[7] G. V. Kuzmina, “Metody geometricheskoi teorii funktsii. I”, Algebra i analiz, 9:3 (1997), 41–103 | MR | Zbl
[8] A. K. Bakhtin, G. P. Bakhtina, Yu. B. Zelinskii, Topologo-algebraicheskie struktury i geometricheskie metody v kompleksnom analize, Tr. In-ta matem. NAN Ukrainy, 73, In-t matem. NAN Ukrainy, Kiev, 2008 | MR | Zbl
[9] V. N. Dubinin, Condenser Capacities and Symmetrization in Geometric Function Theory, Birkhäuser, Basel, 2014 | MR | Zbl
[10] A. Gurvits, R. Kurant, Teoriya funktsii, Nauka, M., 1968 | MR