The Kraus Inequality for Multivalent Functions
Matematičeskie zametki, Tome 102 (2017) no. 4, pp. 559-564
Voir la notice de l'article provenant de la source Math-Net.Ru
For a holomorphic function $f,f'(0)\ne 0$, in the unit disk $U$, we establish a geometric constraint on the image $f(U)$ for which the classical Kraus inequality $|S_{f}(0)|\le 6$ holds; earlier, it was known only in the case of the conformal mapping of $f$. Here $S_{f}(0)$ is the Schwarzian derivative of the function $f$ calculated at the point $z=0$. The proof is based on the strengthened version of Lavrentev's theorem on the extremal decomposition of the Riemann sphere into two disjoint domains.
Keywords:
Schwarzian derivative, holomorphic function, condenser capacity.
@article{MZM_2017_102_4_a7,
author = {V. N. Dubinin},
title = {The {Kraus} {Inequality} for {Multivalent} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {559--564},
publisher = {mathdoc},
volume = {102},
number = {4},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a7/}
}
V. N. Dubinin. The Kraus Inequality for Multivalent Functions. Matematičeskie zametki, Tome 102 (2017) no. 4, pp. 559-564. http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a7/