Birationally Rigid Singular Double Quadrics and Double Cubics
Matematičeskie zametki, Tome 102 (2017) no. 4, pp. 549-558

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is shown that Fano double quadrics of index 1 and dimension at least 6 are birationally superrigid if the branch divisor has at most quadratic singularities of rank at least 6. Fano double cubics of index 1 and dimension at least 8 are birationally superrigid if the branch divisor has at most quadratic singularities of rank at least 8 and another minor condition of general position is satisfied. Hence, in the parameter spaces of these varieties the complement to the set of factorial and birationally superrigid varieties is of codimension at least $\binom{M-4}{2}+1$ and $\binom{M-6}{2}+1$ respectively.
Keywords: algebraic geometry, birational geometry, birational rigidity, Fano variety.
@article{MZM_2017_102_4_a6,
     author = {E. Johnstone},
     title = {Birationally {Rigid} {Singular} {Double} {Quadrics} and {Double} {Cubics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {549--558},
     publisher = {mathdoc},
     volume = {102},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a6/}
}
TY  - JOUR
AU  - E. Johnstone
TI  - Birationally Rigid Singular Double Quadrics and Double Cubics
JO  - Matematičeskie zametki
PY  - 2017
SP  - 549
EP  - 558
VL  - 102
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a6/
LA  - ru
ID  - MZM_2017_102_4_a6
ER  - 
%0 Journal Article
%A E. Johnstone
%T Birationally Rigid Singular Double Quadrics and Double Cubics
%J Matematičeskie zametki
%D 2017
%P 549-558
%V 102
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a6/
%G ru
%F MZM_2017_102_4_a6
E. Johnstone. Birationally Rigid Singular Double Quadrics and Double Cubics. Matematičeskie zametki, Tome 102 (2017) no. 4, pp. 549-558. http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a6/