Finite-Dimensional Subspaces of~$L_p$ with Lipschitz Metric Projection
Matematičeskie zametki, Tome 102 (2017) no. 4, pp. 514-525.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the metric projection onto a finite-dimensional subspace $Y\subset L_p$, $p\in(1,2)\cup(2,\infty)$, satisfies the Lipschitz condition if and only if every function in $Y$ is supported on finitely many atoms. We estimate the Lipschitz constant of such a projection for the case in which the subspace is one-dimensional.
Keywords: metric projection, Lipschitz condition, $L_p$ space, linearity coefficient.
@article{MZM_2017_102_4_a3,
     author = {P. A. Borodin and Yu. Yu. Druzhinin and K. V. Chesnokova},
     title = {Finite-Dimensional {Subspaces} of~$L_p$ with {Lipschitz} {Metric} {Projection}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {514--525},
     publisher = {mathdoc},
     volume = {102},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a3/}
}
TY  - JOUR
AU  - P. A. Borodin
AU  - Yu. Yu. Druzhinin
AU  - K. V. Chesnokova
TI  - Finite-Dimensional Subspaces of~$L_p$ with Lipschitz Metric Projection
JO  - Matematičeskie zametki
PY  - 2017
SP  - 514
EP  - 525
VL  - 102
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a3/
LA  - ru
ID  - MZM_2017_102_4_a3
ER  - 
%0 Journal Article
%A P. A. Borodin
%A Yu. Yu. Druzhinin
%A K. V. Chesnokova
%T Finite-Dimensional Subspaces of~$L_p$ with Lipschitz Metric Projection
%J Matematičeskie zametki
%D 2017
%P 514-525
%V 102
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a3/
%G ru
%F MZM_2017_102_4_a3
P. A. Borodin; Yu. Yu. Druzhinin; K. V. Chesnokova. Finite-Dimensional Subspaces of~$L_p$ with Lipschitz Metric Projection. Matematičeskie zametki, Tome 102 (2017) no. 4, pp. 514-525. http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a3/

[1] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, Berlin, 1970 | MR | Zbl

[2] E. W. Cheney, D. E. Wulbert, “The existence and unicity of best approximation”, Math. Scand., 24:1 (1969), 113–140 | DOI | MR | Zbl

[3] R. Holmes, B. Kripke, “Smoothness of approximation”, Michigan Math. J., 15:2 (1968), 225–248 | DOI | MR | Zbl

[4] B. O. Björnestål, “Local Lipschitz continuity of the metric projection operator”, Approximation Theory, Banach Center Publ., 4, PWN, Warsaw, 1979, 43–54 | MR | Zbl

[5] P. V. Albrekht, “Poryadki modulei nepreryvnosti operatorov pochti nailuchshego priblizheniya”, Matem. sb., 185:9 (1994), 3–28 | MR | Zbl

[6] Yu. Yu. Druzhinin, Svoistva operatora metricheskogo proektirovaniya i vyborok iz chebyshevskikh tsentrov v banakhovykh prostranstvakh., Dis. $\dots$ kand. fiz. matem. nauk, MGU im. M. V. Lomonosova, M., 2013

[7] P. A. Borodin, “Koeffitsient lineinosti operatora metricheskogo proektirovaniya na chebyshevskoe podprostranstvo”, Matem. zametki, 85:2 (2009), 180–188 | DOI | MR | Zbl

[8] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR | Zbl