On the Zero-Dimensionality of the Limit of the Sequence of Generalized Quasiconformal Mappings
Matematičeskie zametki, Tome 102 (2017) no. 4, pp. 586-596

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of the properties of a class of space mappings that is more general than that of bounded distortion mappings (aka quasiregular mappings). It is shown that the locally uniform limit of a sequence of mappings $f\mspace{2mu}\colon D\to {\mathbb R}^n$ of a domain $D\subset{\mathbb R}^n$, $n\ge 2$, satisfying one inequality for the $p$-modulus of families of curves is zero-dimensional. This statement generalizes a well-known theorem on the openness and discreteness of the uniform limit of a sequence of bounded distortion mappings.
Keywords: discrete mapping, bounded distortion mapping (quasiregular mapping).
@article{MZM_2017_102_4_a10,
     author = {E. A. Sevost'yanov},
     title = {On the {Zero-Dimensionality} of the {Limit} of the {Sequence} of {Generalized} {Quasiconformal} {Mappings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {586--596},
     publisher = {mathdoc},
     volume = {102},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a10/}
}
TY  - JOUR
AU  - E. A. Sevost'yanov
TI  - On the Zero-Dimensionality of the Limit of the Sequence of Generalized Quasiconformal Mappings
JO  - Matematičeskie zametki
PY  - 2017
SP  - 586
EP  - 596
VL  - 102
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a10/
LA  - ru
ID  - MZM_2017_102_4_a10
ER  - 
%0 Journal Article
%A E. A. Sevost'yanov
%T On the Zero-Dimensionality of the Limit of the Sequence of Generalized Quasiconformal Mappings
%J Matematičeskie zametki
%D 2017
%P 586-596
%V 102
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a10/
%G ru
%F MZM_2017_102_4_a10
E. A. Sevost'yanov. On the Zero-Dimensionality of the Limit of the Sequence of Generalized Quasiconformal Mappings. Matematičeskie zametki, Tome 102 (2017) no. 4, pp. 586-596. http://geodesic.mathdoc.fr/item/MZM_2017_102_4_a10/