Maximal Subsets Free of Arithmetic Progressions in Arbitrary Sets
Matematičeskie zametki, Tome 102 (2017) no. 3, pp. 436-444.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of determining the maximum cardinality of a subset containing no arithmetic progressions of length $k$ in a given set of size $n$ is considered. It is proved that it is sufficient, in a certain sense, to consider the interval $[1,\dots,n]$. The study continues the work of Komlós, Sulyok, and Szemerédi.
Keywords: additive combinatorics, combinatorial number theory.
@article{MZM_2017_102_3_a8,
     author = {A. S. Semchenkov},
     title = {Maximal {Subsets} {Free} of {Arithmetic} {Progressions} in {Arbitrary} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {436--444},
     publisher = {mathdoc},
     volume = {102},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a8/}
}
TY  - JOUR
AU  - A. S. Semchenkov
TI  - Maximal Subsets Free of Arithmetic Progressions in Arbitrary Sets
JO  - Matematičeskie zametki
PY  - 2017
SP  - 436
EP  - 444
VL  - 102
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a8/
LA  - ru
ID  - MZM_2017_102_3_a8
ER  - 
%0 Journal Article
%A A. S. Semchenkov
%T Maximal Subsets Free of Arithmetic Progressions in Arbitrary Sets
%J Matematičeskie zametki
%D 2017
%P 436-444
%V 102
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a8/
%G ru
%F MZM_2017_102_3_a8
A. S. Semchenkov. Maximal Subsets Free of Arithmetic Progressions in Arbitrary Sets. Matematičeskie zametki, Tome 102 (2017) no. 3, pp. 436-444. http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a8/

[1] F. Behrend, “On sets of integers which contain no three terms in arithmetic progression”, Proc. Nat. Acad. Sci. U. S. A., 32 (1946), 331–332 | DOI | MR | Zbl

[2] W. T. Gowers, “A new proof of Szemeredi's theorem”, Geom. Funct. Anal., 11:3 (2001), 465–588 | DOI | MR | Zbl

[3] I. D. Shkredov, “Teorema Semeredi i zadachi ob arifmeticheskikh progressiyakh”, UMN, 61:6 (372) (2006), 111–178 | DOI | MR | Zbl

[4] T. F. Bloom, “Translation invariant equation and the method of Sanders”, Bull. Lond. Math. Soc., 44:5 (2012), 1050–1067 | DOI | MR | Zbl

[5] J. Komlós, M. Sulyok, E. Szemeredi, “Linear problems in combinatorial number theory”, Acta Math. Acad. Sci. Hungar., 26 (1975), 113–121 | DOI | MR | Zbl

[6] K. O'Bryant, “Thick subsets that do not contain arithmetic progressions”, Integers, 13 (2013), A18 | MR | Zbl

[7] T. Tao, V. Vu, Additive Combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl