Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_102_3_a8, author = {A. S. Semchenkov}, title = {Maximal {Subsets} {Free} of {Arithmetic} {Progressions} in {Arbitrary} {Sets}}, journal = {Matemati\v{c}eskie zametki}, pages = {436--444}, publisher = {mathdoc}, volume = {102}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a8/} }
A. S. Semchenkov. Maximal Subsets Free of Arithmetic Progressions in Arbitrary Sets. Matematičeskie zametki, Tome 102 (2017) no. 3, pp. 436-444. http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a8/
[1] F. Behrend, “On sets of integers which contain no three terms in arithmetic progression”, Proc. Nat. Acad. Sci. U. S. A., 32 (1946), 331–332 | DOI | MR | Zbl
[2] W. T. Gowers, “A new proof of Szemeredi's theorem”, Geom. Funct. Anal., 11:3 (2001), 465–588 | DOI | MR | Zbl
[3] I. D. Shkredov, “Teorema Semeredi i zadachi ob arifmeticheskikh progressiyakh”, UMN, 61:6 (372) (2006), 111–178 | DOI | MR | Zbl
[4] T. F. Bloom, “Translation invariant equation and the method of Sanders”, Bull. Lond. Math. Soc., 44:5 (2012), 1050–1067 | DOI | MR | Zbl
[5] J. Komlós, M. Sulyok, E. Szemeredi, “Linear problems in combinatorial number theory”, Acta Math. Acad. Sci. Hungar., 26 (1975), 113–121 | DOI | MR | Zbl
[6] K. O'Bryant, “Thick subsets that do not contain arithmetic progressions”, Integers, 13 (2013), A18 | MR | Zbl
[7] T. Tao, V. Vu, Additive Combinatorics, Cambridge Stud. Adv. Math., 105, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl