Maximal Subsets Free of Arithmetic Progressions in Arbitrary Sets
Matematičeskie zametki, Tome 102 (2017) no. 3, pp. 436-444

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of determining the maximum cardinality of a subset containing no arithmetic progressions of length $k$ in a given set of size $n$ is considered. It is proved that it is sufficient, in a certain sense, to consider the interval $[1,\dots,n]$. The study continues the work of Komlós, Sulyok, and Szemerédi.
Keywords: additive combinatorics, combinatorial number theory.
@article{MZM_2017_102_3_a8,
     author = {A. S. Semchenkov},
     title = {Maximal {Subsets} {Free} of {Arithmetic} {Progressions} in {Arbitrary} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {436--444},
     publisher = {mathdoc},
     volume = {102},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a8/}
}
TY  - JOUR
AU  - A. S. Semchenkov
TI  - Maximal Subsets Free of Arithmetic Progressions in Arbitrary Sets
JO  - Matematičeskie zametki
PY  - 2017
SP  - 436
EP  - 444
VL  - 102
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a8/
LA  - ru
ID  - MZM_2017_102_3_a8
ER  - 
%0 Journal Article
%A A. S. Semchenkov
%T Maximal Subsets Free of Arithmetic Progressions in Arbitrary Sets
%J Matematičeskie zametki
%D 2017
%P 436-444
%V 102
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a8/
%G ru
%F MZM_2017_102_3_a8
A. S. Semchenkov. Maximal Subsets Free of Arithmetic Progressions in Arbitrary Sets. Matematičeskie zametki, Tome 102 (2017) no. 3, pp. 436-444. http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a8/