Spectral Asymptotics for Problems with Integral Constraints
Matematičeskie zametki, Tome 102 (2017) no. 3, pp. 405-414.

Voir la notice de l'article provenant de la source Math-Net.Ru

The eigenvalue problem for differential operators of arbitrary order with integral constraints is considered. The asymptotics of the eigenvalues is obtained. The results are applied to finding the asymptotics of the probability of small deviations for some detrended processes of $n$th order.
Keywords: spectral asymptotics, Gaussian process, small deviation.
@article{MZM_2017_102_3_a6,
     author = {Yu. P. Petrova},
     title = {Spectral {Asymptotics} for {Problems} with {Integral} {Constraints}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {405--414},
     publisher = {mathdoc},
     volume = {102},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a6/}
}
TY  - JOUR
AU  - Yu. P. Petrova
TI  - Spectral Asymptotics for Problems with Integral Constraints
JO  - Matematičeskie zametki
PY  - 2017
SP  - 405
EP  - 414
VL  - 102
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a6/
LA  - ru
ID  - MZM_2017_102_3_a6
ER  - 
%0 Journal Article
%A Yu. P. Petrova
%T Spectral Asymptotics for Problems with Integral Constraints
%J Matematičeskie zametki
%D 2017
%P 405-414
%V 102
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a6/
%G ru
%F MZM_2017_102_3_a6
Yu. P. Petrova. Spectral Asymptotics for Problems with Integral Constraints. Matematičeskie zametki, Tome 102 (2017) no. 3, pp. 405-414. http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a6/

[1] X. Ai, W. V. Li, “Karhunen–Loève expansions for the $m$-th order detrended Brownian motion”, Sci. China Math., 57:10 (2014), 2043–2052 | DOI | MR | Zbl

[2] A. L. Skubachevskii, “Neklassicheskie kraevye zadachi. I”, SMFN, 26, RUDN, M., 2007, 3–132 | MR | Zbl

[3] M. Janet, “Les valeurs moyennes des carres de deux dérivées d'ordres consecutifs, et le développement en fraction continue de tang $x$”, Bull. Sci. Math. (2), 55 (1931), 11–23 | Zbl

[4] A. I. Nazarov, A. N. Petrova, “O tochnykh konstantakh v nekotorykh teoremakh vlozheniya vysokogo poryadka”, Vestn. Sankt-Peterburgskogo un-ta. Ser. 1. Matem. Mekh. Astron., 2008, no. 4, 16–20 | Zbl

[5] M. Janet, “Sur le minimum du rapport de certaines intégrales”, C. R. Acad. Sci. Paris, 193 (1931), 977–979 | Zbl

[6] A. C. Slastenin, Tochnye konstanty v nekotorykh odnomernykh teoremakh vlozheniya, Diplomnaya rabota, SPbGU, SPb., 2014

[7] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, GIFML, M., 1963 | MR

[8] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[9] E. Titchmarsh, Teoriya funktsii, Nauka, M., 1980 | MR | Zbl

[10] A. I. Nazarov, “O tochnoi konstante v asimptotike malykh uklonenii v $L_2$-norme nekotorykh gaussovskikh protsessov”, Nelineinye zadachi i teoriya funktsii, Problemy matematicheskogo analiza, 26, T. Rozhkovskaya, Novosibirsk, 2003, 179–214

[11] L. Beghin, Ya. Yu. Nikitin, E. Orsingher, “Exact small ball constants for some Gaussian processes under $L^2$-norm”, Veroyatnost i statistika. 6, Zap. nauchn. sem. POMI, 298, POMI, SPb., 2003, 5–21 | MR | Zbl

[12] P. Deheuvels, “A Karhunen–Loève expansion for a mean-centered Brownian bridge”, Statist. Probab. Lett., 77:12 (2007), 1190–1200 | DOI | MR | Zbl

[13] X. Ai, W. V. Li, G. Liu, “Karhunen–Loève expansions for the detrended Brownian motion”, Statist. Probab. Lett., 82:7 (2012), 1235–1241 | DOI | MR | Zbl

[14] M. A. Lifshits, Lektsii po gaussovskim sluchainym protsessam, Lan, SPb., 2016

[15] W. V. Li, “Comparison results for the lower tail of Gaussian seminorms”, J. Theoret. Probab., 5:1 (1992), 1–31 | DOI | MR | Zbl

[16] F. Gao, J. Hannig, F. Torcaso, “Comparison theorems for small deviations of random series”, Electron. J. Probab., 8:21 (2003), 1–17 | DOI | MR | Zbl

[17] A. I. Nazarov, Ya. Yu. Nikitin, “Exact $L_2$-small ball behavior of integrated Gaussian processes and spectral asymptotics of boundary value problems”, Probab. Theory Related Fields, 129:4 (2004), 469–494 | DOI | MR | Zbl