Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_102_3_a5, author = {I. V. Orlov}, title = {Embedding of a {Uniquely} {Divisible} {Abelian} {Semigroup} {In} a {Convex} {Cone}}, journal = {Matemati\v{c}eskie zametki}, pages = {396--404}, publisher = {mathdoc}, volume = {102}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a5/} }
I. V. Orlov. Embedding of a Uniquely Divisible Abelian Semigroup In a Convex Cone. Matematičeskie zametki, Tome 102 (2017) no. 3, pp. 396-404. http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a5/
[1] G. Birkhoff, “Integration of functions with values in a Banach space”, Trans. Amer. Math. Soc., 38:2 (1935), 357–378 | MR | Zbl
[2] J. H. Rådström, “An embedding theorem for space of convex sets”, Proc. Amer. Math. Soc., 3 (1952), 165–169 | DOI | MR | Zbl
[3] G. Godini, “A framework for best simultaneous approximation, normed almost linear spaces”, J. Approx. Theory, 43:4 (1985), 338–358 | DOI | MR | Zbl
[4] R. E. Worth, “Boundaries of semilinear spaces and semialgebras”, Trans. Amer. Math. Soc., 148 (1970), 99–119 | DOI | MR | Zbl
[5] R. Urbański, “A generalization of the Minkovski–Rädström–Hörmander theorem”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 24:9 (1976), 709–715 | MR | Zbl
[6] K. Keimel, W. Roth, Ordered Cones and Approximation, Lecture Notes in Math., 1517, Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl
[7] B. Fuchssteiner, W. Lusky, Convex Cones, North Holland Math. Stud., 56, North Holland, Amsterdam, 1981 | MR | Zbl
[8] T. Abreu, E. Corbacho, V. Tarieladze, “Uniform type conoids”, Math. Pannon., 19:2 (2008), 155–170 | MR
[9] E. Corbacho Rosas, D. Dikranjan, V. Tarieladze, “Absorption adjunctable semigroups”, Nuclear Groups and Lie Groups, Res. Exp. Math., 24, Heldermann Verlag, Lemgo, 2001, 77–103 | MR | Zbl
[10] I. V. Orlov, “Vvedenie v sublineinyi analiz”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 53, RUDN, M., 2014, 64–132 | MR | Zbl
[11] I. V. Orlov, “Teoremy ob obratnoi i neyavnoi funktsiyakh v klasse subgladkikh otobrazhenii”, Matem. zametki, 99:4 (2016), 631–634 | DOI | MR | Zbl
[12] F. S. Stonyakin, “An analogue of the Hahn–Banach theorem for functionals on abstract convex cones”, Eurasian Math. J., 7:3 (2016), 89–99 | MR
[13] M. L. Goldman, P. P. Zabreiko, “Optimalnoe banakhovo funktsionalnoe prostranstvo dlya konusa neotritsatelnykh ubyvayuschikh funktsii”, Tr. In-ta matem., 22:1 (2014), 24–34
[14] V. D. Stepanov, “Ob optimalnykh prostranstvakh Banakha, soderzhaschikh vesovoi konus monotonnykh ili kvazivognutykh funktsii”, Matem. zametki, 98:6 (2015), 907–922 | DOI | MR | Zbl
[15] E. G. Bakhtigareeva, M. L. Goldman, “Assotsiirovannye normy i optimalnye vlozheniya dlya odnogo klassa dvukhvesovykh integralnykh kvazinorm”, Fundament. i prikl. matem., 19:5 (2014), 3–33 | MR
[16] E. Bakhtigareeva, “Optimal Banach function space for a given cone of decreasing functions in a weighted $L_p$-space”, Eurasian Math. J., 6:1 (2015), 6–25 | MR
[17] A. Löhne, On Convex Functions with Values in Semi-Linear Spaces, , 2004 http://ito.mathematik.uni-halle.de
[18] A. Hamel, A. Löhne, Minimal Set Theorems, http://ito.mathematik.uni-halle.de/~loehne/pdf/mst_web.pdf
[19] H. Cartan, S. Eilenberg, Homological Algebra, Princeton Univ. Press, Princeton, NJ, 1999 | MR | Zbl
[20] S. Feigelstock, “Divisible is injective”, Soochow J. Math., 32:2 (2006), 241–243 | MR | Zbl
[21] C. Casacuberta, J. L. Rodríguez, L. J. Hernándes Paricio, “Models for torsion homotopy types”, Israel J. Math., 107 (1998), 301–318 | DOI | MR | Zbl
[22] B. V. Gnedenko, Kurs teorii veroyatnostei, Nauka, M., 1965 | MR | Zbl
[23] S. M. Ross, Introduction to Probability Models, Academic Press, Boston, MA, 1993 | MR | Zbl
[24] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962 | MR | Zbl
[25] R. V. Shamin, Polugruppy operatorov, RUDN, M., 2008