Embedding of a Uniquely Divisible Abelian Semigroup In a Convex Cone
Matematičeskie zametki, Tome 102 (2017) no. 3, pp. 396-404

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every uniquely divisible Abelian semigroup admits an injective subadditive embedding in a convex cone. As an application, the classical theory of generators of one-parameter operator semigroups is generalized to the case in which the parameter ranges over a uniquely divisible semigroup.
Keywords: Abelian semigroup, unique divisibility, convex cone, infinitesimal generator of an operator semigroup.
@article{MZM_2017_102_3_a5,
     author = {I. V. Orlov},
     title = {Embedding of a {Uniquely} {Divisible} {Abelian} {Semigroup} {In} a {Convex} {Cone}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {396--404},
     publisher = {mathdoc},
     volume = {102},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a5/}
}
TY  - JOUR
AU  - I. V. Orlov
TI  - Embedding of a Uniquely Divisible Abelian Semigroup In a Convex Cone
JO  - Matematičeskie zametki
PY  - 2017
SP  - 396
EP  - 404
VL  - 102
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a5/
LA  - ru
ID  - MZM_2017_102_3_a5
ER  - 
%0 Journal Article
%A I. V. Orlov
%T Embedding of a Uniquely Divisible Abelian Semigroup In a Convex Cone
%J Matematičeskie zametki
%D 2017
%P 396-404
%V 102
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a5/
%G ru
%F MZM_2017_102_3_a5
I. V. Orlov. Embedding of a Uniquely Divisible Abelian Semigroup In a Convex Cone. Matematičeskie zametki, Tome 102 (2017) no. 3, pp. 396-404. http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a5/