A Countable Definable Set Containing no Definable Elements
Matematičeskie zametki, Tome 102 (2017) no. 3, pp. 369-382.

Voir la notice de l'article provenant de la source Math-Net.Ru

The consistency of the existence of a countable definable set of reals, containing no definable elements, is established. The model, where such a set exists, is obtained by means of a countable product of Jensen's forcing with finite support.
Keywords: countable sets, Jensen's forcing.
Mots-clés : definable elements
@article{MZM_2017_102_3_a3,
     author = {V. G. Kanovei and V. A. Lyubetskii},
     title = {A {Countable} {Definable} {Set} {Containing} no {Definable} {Elements}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {369--382},
     publisher = {mathdoc},
     volume = {102},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a3/}
}
TY  - JOUR
AU  - V. G. Kanovei
AU  - V. A. Lyubetskii
TI  - A Countable Definable Set Containing no Definable Elements
JO  - Matematičeskie zametki
PY  - 2017
SP  - 369
EP  - 382
VL  - 102
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a3/
LA  - ru
ID  - MZM_2017_102_3_a3
ER  - 
%0 Journal Article
%A V. G. Kanovei
%A V. A. Lyubetskii
%T A Countable Definable Set Containing no Definable Elements
%J Matematičeskie zametki
%D 2017
%P 369-382
%V 102
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a3/
%G ru
%F MZM_2017_102_3_a3
V. G. Kanovei; V. A. Lyubetskii. A Countable Definable Set Containing no Definable Elements. Matematičeskie zametki, Tome 102 (2017) no. 3, pp. 369-382. http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a3/

[1] J. Hadamard, R. Baire, H. Lebesgue, E. Borel, “Cinq lettres sur la théorie des ensembles”, Bull. Soc. Math. France, 33 (1905), 261–273 | MR | Zbl

[2] A. Tarski, “Der Wahrheitsbegriff in den formalisierten Sprachen”, Stud. Philos., 1 (1936), 261–405 | Zbl

[3] J. Myhill, D. Scott, “Ordinal definability”, 1971 Axiomatic Set Theory, Amer. Math. Soc., Providence, RI, 1971, 271–278 | MR | Zbl

[4] V. G. Kanovei, V. A. Lyubetskii, Sovremennaya teoriya mnozhestv: absolyutno nerazreshimye klassicheskie problemy, MTsNMO, M., 2013

[5] R. M. Solovay, “A model of set theory in which every set of reals is Lebesgue measurable”, Ann. of Math. (2), 92 (1970), 1–56 | DOI | MR | Zbl

[6] A Question About Ordinal Definable Real Numbers, Mathoverflow, 2010 http://mathoverflow.net/questions/17608

[7] A. Enayat, Ordinal Definable Numbers, Foundations of Mathematics, 2010 http://cs.nyu.edu/pipermail/fom/2010-July/014944.html

[8] V. G. Kanovei, V. A. Lyubetskii, Sovremennaya teoriya mnozhestv: borelevskie i proektivnye mnozhestva, MTsNMO, M., 2010

[9] V. Kanovei, Borel Equivalence Relations. Structure and Classification, Univ. Lecture Ser., 44, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl

[10] A. Enayat, “On the Leibniz–Mycielski axiom in set theory”, Fund. Math., 181:3 (2004), 215–231 | DOI | MR | Zbl

[11] R. Jensen, “Definable sets of minimal degree”, Mathematical Logic and Foundations of Set Theory, North-Holland, Amsterdam, 1970, 122–128 | MR | Zbl

[12] V. G. Kanovei, V. A. Lyubetskii, “Neuniformizuemye mnozhestva vtorogo proektivnogo urovnya so schetnymi secheniyami v vide klassov Vitali”, Izv. RAN. Ser. matem. (to appear)

[13] V. Kanovei, V. Lyubetsky, “Counterexamples to countable-section $\varPi^1_2$ uniformization and $\varPi^1_3$ separation”, Ann. Pure Appl. Logic, 167:3 (2016), 262–283 | DOI | MR | Zbl

[14] M. Golshani, V. Kanovei, V. Lyubetsky, “A Groszek–Laver pair of undistinguishable $E_0$ classes”, MLQ Math. Log. Q., 63:1-2 (2017), 19–31 | DOI

[15] V. G. Kanovei, “Proektivnaya ierarkhiya Luzina: sovremennoe sostoyanie teorii”, Spravochnaya kniga po matematicheskoi logike. Ch. II. Teoriya mnozhestv, Nauka, M., 1982, 273–364

[16] V. G. Kanovei, V. A. Lyubetskii, “Effektivnaya minimalnaya kodirovka neschetnykh mnozhestv”, Sib. matem. zhurn., 52:5 (2011), 1074–1086 | MR

[17] J. Bagaria, V. Kanovei, “On coding uncountable sets by reals”, MLQ Math. Log. Q., 56:4 (2010), 409–424 | DOI | MR | Zbl