Series in Multiplicative Systems in Lorentz Spaces
Matematičeskie zametki, Tome 102 (2017) no. 3, pp. 339-354

Voir la notice de l'article provenant de la source Math-Net.Ru

Series in multiplicative systems $\chi$ with generalized monotone coefficients are studied. Necessary and sufficient Hardy–Littlewood type conditions for the sums of such series to belong to the Lorentz space are proved. As corollaries, we establish estimates of best approximation in the system $\chi$ and Konyushkov-type theorems on the equivalence of $O$- and $\asymp$-relations for the weighted sums of the Fourier coefficients in the system $\chi$ and for the best approximations.
Keywords: Lorentz space, multiplicative systems, best approximation, Konyushkov-type theorems on the equivalence of $O$- and $\asymp$-relations.
@article{MZM_2017_102_3_a1,
     author = {S. S. Volosivets},
     title = {Series in {Multiplicative} {Systems} in {Lorentz} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {339--354},
     publisher = {mathdoc},
     volume = {102},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a1/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - Series in Multiplicative Systems in Lorentz Spaces
JO  - Matematičeskie zametki
PY  - 2017
SP  - 339
EP  - 354
VL  - 102
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a1/
LA  - ru
ID  - MZM_2017_102_3_a1
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T Series in Multiplicative Systems in Lorentz Spaces
%J Matematičeskie zametki
%D 2017
%P 339-354
%V 102
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a1/
%G ru
%F MZM_2017_102_3_a1
S. S. Volosivets. Series in Multiplicative Systems in Lorentz Spaces. Matematičeskie zametki, Tome 102 (2017) no. 3, pp. 339-354. http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a1/