Optimal Control of Undamped Sobolev-Type Retarded Systems
Matematičeskie zametki, Tome 102 (2017) no. 3, pp. 323-338.

Voir la notice de l'article provenant de la source Math-Net.Ru

The optimal control problem for a system whose evolution is described by a Sobolev-type second-order retarded operator-differential equation is studied. The main assumption is that a restriction is imposed on the derivatives of the resolvent of the quadratic operator pencil on a ray in the right half-plane. Several applications to systems described by non-Kovalevskaya-type partial differential equations are considered.
Keywords: cosine operator function, quadratic quality functional, non-Kovalevskaya-type partial differential equation.
@article{MZM_2017_102_3_a0,
     author = {L. A. Vlasenko and A. G. Rutkas},
     title = {Optimal {Control} of {Undamped} {Sobolev-Type} {Retarded} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--338},
     publisher = {mathdoc},
     volume = {102},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a0/}
}
TY  - JOUR
AU  - L. A. Vlasenko
AU  - A. G. Rutkas
TI  - Optimal Control of Undamped Sobolev-Type Retarded Systems
JO  - Matematičeskie zametki
PY  - 2017
SP  - 323
EP  - 338
VL  - 102
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a0/
LA  - ru
ID  - MZM_2017_102_3_a0
ER  - 
%0 Journal Article
%A L. A. Vlasenko
%A A. G. Rutkas
%T Optimal Control of Undamped Sobolev-Type Retarded Systems
%J Matematičeskie zametki
%D 2017
%P 323-338
%V 102
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a0/
%G ru
%F MZM_2017_102_3_a0
L. A. Vlasenko; A. G. Rutkas. Optimal Control of Undamped Sobolev-Type Retarded Systems. Matematičeskie zametki, Tome 102 (2017) no. 3, pp. 323-338. http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a0/

[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 7. Teoriya uprugosti, Nauka, M., 1987 | MR

[2] L. M. Brekhovskikh, V. V. Goncharov, Vvedenie v mekhaniku sploshnykh sred (v prilozhenii k teorii voln), Nauka, M., 1982

[3] G. Dyuvo, Zh.-L. Lions, Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR | Zbl

[4] J. E. Lagnese, Boundary Stabilization of Thin Plates, SIAM Stud. Appl. Math., 10, SIAM, Philadelphia, PA, 1989 | MR | Zbl

[5] L. A. Vlasenko, A. G. Rutkas, “Ob odnom klasse impulsnykh funktsionalno-differentsialnykh uravnenii s neatomarnym raznostnym operatorom”, Matem. zametki, 95:1 (2014), 37–49 | DOI | MR | Zbl

[6] Dzh. Kheil, Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR | Zbl

[7] J. H. Lightbourne, S. M. Rankin, “A partial functional differential equation of Sobolev type”, J. Math. Anal. Appl., 93:2 (1983), 328–337 | DOI | MR | Zbl

[8] A. G. Kostyuchenko, A. A. Shkalikov, “Samosopryazhennye kvadratichnye puchki operatorov i ellipticheskie zadachi”, Funkts. analiz i ego pril., 17:2 (1983), 38–61 | MR | Zbl

[9] A. A. Shkalikov, “Silno dempfirovannye puchki operatorov i razreshimost sootvetstvuyuschikh operatorno-differentsialnykh uravnenii”, Matem. sb., 135 (177):1 (1988), 96–118 | MR | Zbl

[10] V. V. Vlasov, K. I. Shmatov, “Korrektnaya razreshimost uravnenii giperbolicheskogo tipa s posledeistviem v gilbertovom prostranstve”, Funktsionalnye prostranstva, priblizheniya, differentsialnye uravneniya, Tr. MIAN, 243, Nauka, M., 2003, 127–137 | MR | Zbl

[11] V. V. Vlasov, J. Wu, “Solvability and spectral analysis of abstract hyperbolic equations with delay”, Funct. Differ. Equ., 16:4 (2009), 751–768 | MR | Zbl

[12] H. O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, North-Holland Math. Stud., 108, North-Holland Publ., Amsterdam, 1985 | MR | Zbl

[13] Dzh. Goldstein, Polugruppy lineinykh operatorov i ikh prilozheniya, Vyscha shkola, Kiev, 1989 | MR

[14] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967 | MR | Zbl

[15] Zh.-L. Lions, Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR | Zbl

[16] A. Kowalewski, “Optimal control of distributed hyperbolic systems with multiple time-varying lags”, Internat. J. Control, 71:3 (1998), 419–435 | DOI | MR | Zbl

[17] S. Nakagiri, “Optimal control of linear retarded systems in Banach spaces”, J. Math. Anal. Appl., 120:1 (1986), 169–210 | DOI | MR | Zbl

[18] L. A. Vlasenko, “An optimal control problem for Sobolev retarded systems”, Funct. Differ. Equ., 17:3-4 (2010), 401–412 | MR | Zbl

[19] B. Nagy, “On cosine operator functions in Banach spaces”, Acta Sci. Math. (Szeged), 36 (1974), 281–289 | MR | Zbl

[20] C. C. Travis, G. F. Webb, “Cosine families and abstract nonlinear second order differential equations”, Acta Math. Acad. Sci. Hungar., 32 (1978), 75–96 | DOI | MR | Zbl

[21] Zh. Ben Amara, A. A. Vladimirov, A. A. Shkalikov, “Spektralnye svoistva odnogo lineinogo puchka differentsialnykh operatorov chetvertogo poryadka”, Matem. zametki, 94:1 (2013), 55–67 | DOI | MR | Zbl

[22] V. V. Vasilev, S. G. Krein, S. I. Piskarev, “Polugruppy operatorov, kosinus operator-funktsii i lineinye differentsialnye uravneniya”, Itogi nauki i tekhn. Ser. Mat. anal., 28, VINITI, M., 1990, 87–202 | MR | Zbl