Optimal Control of Undamped Sobolev-Type Retarded Systems
Matematičeskie zametki, Tome 102 (2017) no. 3, pp. 323-338

Voir la notice de l'article provenant de la source Math-Net.Ru

The optimal control problem for a system whose evolution is described by a Sobolev-type second-order retarded operator-differential equation is studied. The main assumption is that a restriction is imposed on the derivatives of the resolvent of the quadratic operator pencil on a ray in the right half-plane. Several applications to systems described by non-Kovalevskaya-type partial differential equations are considered.
Keywords: cosine operator function, quadratic quality functional, non-Kovalevskaya-type partial differential equation.
@article{MZM_2017_102_3_a0,
     author = {L. A. Vlasenko and A. G. Rutkas},
     title = {Optimal {Control} of {Undamped} {Sobolev-Type} {Retarded} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--338},
     publisher = {mathdoc},
     volume = {102},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a0/}
}
TY  - JOUR
AU  - L. A. Vlasenko
AU  - A. G. Rutkas
TI  - Optimal Control of Undamped Sobolev-Type Retarded Systems
JO  - Matematičeskie zametki
PY  - 2017
SP  - 323
EP  - 338
VL  - 102
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a0/
LA  - ru
ID  - MZM_2017_102_3_a0
ER  - 
%0 Journal Article
%A L. A. Vlasenko
%A A. G. Rutkas
%T Optimal Control of Undamped Sobolev-Type Retarded Systems
%J Matematičeskie zametki
%D 2017
%P 323-338
%V 102
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a0/
%G ru
%F MZM_2017_102_3_a0
L. A. Vlasenko; A. G. Rutkas. Optimal Control of Undamped Sobolev-Type Retarded Systems. Matematičeskie zametki, Tome 102 (2017) no. 3, pp. 323-338. http://geodesic.mathdoc.fr/item/MZM_2017_102_3_a0/