Gehring--Martin--Tan Numbers and Tan Numbers of Elementary Subgroups of~$\operatorname{PSL}(2,\mathbb{C})$
Matematičeskie zametki, Tome 102 (2017) no. 2, pp. 255-269.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Gehring–Martin–Tan number and the Tan number are real quantities defined for two-generated subgroups of the group $\operatorname{PSL}(2,\mathbb{C})$. It follows from the necessary discreteness conditions proved by Gehring and Martin and, independently, by Tan that, for discrete groups, these quantities are bounded below by $1$. In the paper, we find precise values of these numbers for the majority of elementary discrete groups and prove that, for every real $r \ge 1$, there are infinitely many elementary discrete groups with the Gehring–Martin–Tan number equal to $r$ and the Tan number equal to $r$.
Keywords: hyperbolic space, discrete group.
@article{MZM_2017_102_2_a7,
     author = {A. V. Maslei},
     title = {Gehring--Martin--Tan {Numbers} and {Tan} {Numbers} of {Elementary} {Subgroups} of~$\operatorname{PSL}(2,\mathbb{C})$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {255--269},
     publisher = {mathdoc},
     volume = {102},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a7/}
}
TY  - JOUR
AU  - A. V. Maslei
TI  - Gehring--Martin--Tan Numbers and Tan Numbers of Elementary Subgroups of~$\operatorname{PSL}(2,\mathbb{C})$
JO  - Matematičeskie zametki
PY  - 2017
SP  - 255
EP  - 269
VL  - 102
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a7/
LA  - ru
ID  - MZM_2017_102_2_a7
ER  - 
%0 Journal Article
%A A. V. Maslei
%T Gehring--Martin--Tan Numbers and Tan Numbers of Elementary Subgroups of~$\operatorname{PSL}(2,\mathbb{C})$
%J Matematičeskie zametki
%D 2017
%P 255-269
%V 102
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a7/
%G ru
%F MZM_2017_102_2_a7
A. V. Maslei. Gehring--Martin--Tan Numbers and Tan Numbers of Elementary Subgroups of~$\operatorname{PSL}(2,\mathbb{C})$. Matematičeskie zametki, Tome 102 (2017) no. 2, pp. 255-269. http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a7/

[1] T. Jørgensen, “A note on subgroups of $SL(2,C)$”, Quart. J. Math. Oxford Ser. (2), 28:110 (1977), 209–211 | DOI | MR | Zbl

[2] A. Berdon, Geometriya diskretnykh grupp, Nauka, M., 1986 | MR

[3] T. Jørgensen, “On discrete groups of Möbius transformations”, Amer. J. Math., 98:3 (1976), 739–749 | DOI | MR | Zbl

[4] A. Yu. Vesnin, A. V. Maslei, Dvuporozhdennye podgruppy $\operatorname{PSL}(2,\mathbb{C})$, ekstremalnye dlya neravenstva Iorgensena i ego analogov, Tr. seminara po vektornomu i tenzornomu analizu s ikh prilozheniyami k geometrii, mekhanike i fizike, 30, Izd-vo Mosk. un-ta, M., 2014

[5] T. Jørgensen, M. Kiikka, “Some extreme discrete groups”, Ann. Acad. Sci. Fenn. Ser. A I Math., 1:2 (1975), 245–248 | DOI | MR | Zbl

[6] T. Jørgensen, A. Lascurain, T. Pignataro, “Translation extensions of the classical modular group”, Complex Variables Theory Appl., 19:4 (1992), 205–209 | DOI | MR | Zbl

[7] H. Sato, R. Yamada, “Some extreme Kleinian groups for Jorgensen's inequality”, Rep. Fac. Sci. Shizuoka Univ., 27 (1993), 1–8 | MR | Zbl

[8] H. Sato, “One-parameter families of extreme discrete groups for Jørgensen's inequality”, In the Tradition of Ahlfors and Bers, Contemp. Math., 256, Amer. Math. Soc., Providence, RI, 2000, 271–287 | MR | Zbl

[9] B. Maskit, “Some special 2-generator Kleinian groups”, Proc. Amer. Math. Soc., 106:1 (1989), 175–186 | MR | Zbl

[10] R. González-Acuna, A. Ramírez, “Jørgensen subgroups of the Picard group”, Osaka J. Math., 44:2 (2007), 471–482 | MR | Zbl

[11] J. Callahan, “Jørgensen number and arithmeticity”, Conform. Geom. Dyn., 13 (2009), 160–186 | DOI | MR | Zbl

[12] F. W. Gehring, G. J. Martin, “Stability and extremality in Jørgensen's inequality”, Complex Variables Theory Appl., 12:1-4 (1989), 277–282 | DOI | MR | Zbl

[13] C. Li, M. Oichi, H. Sato, “Jørgensen groups of parabolic type I (finite case)”, Comput. Methods Funct. Theory., 5:2 (2005), 409–430 | MR | Zbl

[14] C. Li, M. Oichi, H. Sato, “Jørgensen groups of parabolic type II (countably infinite case)”, Osaka J. Math., 41:3 (2004), 491–506 | MR | Zbl

[15] C. Li, M. Oichi, H. Sato, “Jørgensen groups of parabolic type III (uncountably infinite case)”, Kodai Math. J., 28:2 (2005), 248–264 | DOI | MR | Zbl

[16] H. Sato, “The Jørgensen number of the Whitehead link group”, Bol. Soc. Mat. Mexicana (3), 10 (2004), 495–502 | MR | Zbl

[17] M. Oichi, H. Sato, “Jørgensen numbers of discrete groups”, Complex Analysis and Geometry of Hyperbolic Spaces, 1518 (2006), 105–118

[18] A. Yu. Vesnin, A. V. Maslei, “O chislakh Iorgensena i ikh analogakh dlya grupp orbifoldov vosmerki”, Sib. matem. zhurn., 55:5 (2014), 989–1000 | MR | Zbl

[19] F. W. Gehring, G. J. Martin, “Iteration theory and inequalities for Kleinian groups”, Bull. Amer. Math. Soc. (N.S.), 21:1 (1989), 57–63 | DOI | MR | Zbl

[20] D. Tan, “On two-generator discrete groups of Möbius transformations”, Proc. Amer. Math. Soc., 106:3 (1989), 763–770 | MR | Zbl

[21] J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, Grad. Texts in Math., 149, Springer-Verlag, New York, 2006 | MR | Zbl

[22] D. Repovš, A. Vesnin, “On Gehring–Martin–Tan groups with an elliptic generator”, Bull. Aust. Math. Soc., 94:2 (2016), 326–336 | MR

[23] N. A. Isachenko, “O sistemakh porozhdayuschikh podgrupp $\mathrm {PSL} (2, \mathbb{C})$”, Sib. matem. zhurn., 31:1 (1990), 191–193 | MR | Zbl

[24] A. V. Maslei, “On parameters and discreteness of Maskit subgroups in $\mathrm {PSL} (2, \mathbb{C})$”, Sib. elektron. matem. izv., 14 (2017), 125–134 | DOI

[25] E. B. Vinberg, Kurs algebry, Faktorial Press, M., 2001

[26] F. W. Gehring, G. J. Martin, “Commutators, collars and the geometry of Möbius groups”, J. Anal. Math., 63:1 (1994), 175–219 | DOI | MR | Zbl

[27] H. S. M. Coxeter, Regular Polytopes, Methuen, London, 1948 | MR | Zbl