Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_102_2_a6, author = {A. P. Laurin\v{c}ikas}, title = {A {Remark} on the {Distribution} of the {Values} of the {Riemann} {Zeta} {Function}}, journal = {Matemati\v{c}eskie zametki}, pages = {247--254}, publisher = {mathdoc}, volume = {102}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a6/} }
A. P. Laurinčikas. A Remark on the Distribution of the Values of the Riemann Zeta Function. Matematičeskie zametki, Tome 102 (2017) no. 2, pp. 247-254. http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a6/
[1] U. Krengel, Ergodic Theorems, De Gruyter Stud. Math., 6, Walter de Gruyter, Berlin, 1985 | MR | Zbl
[2] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Math. Appl., 352, Kluwer Acad. Publ., Dordrecht, 1996 | MR | Zbl
[3] P. Billingsley, Convergence of Probability Measures, John Wiley Sons, New York, 1968 | MR | Zbl
[4] A. Dubickas, A. Laurinčikas, “Distribution modulo $1$ and the discrete universality of the Riemann zeta-function”, Abh. Math. Semin. Univ. Hambg., 86:1 (2016), 79–87 | DOI | MR | Zbl
[5] L. Kuipers, H. Niederreiter, Uniform Distribution of Sequences, Wiley-Interscience, New York, 1974 | MR | Zbl
[6] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math., 227, Springer-Verlag, Berlin, 1971 | DOI | MR | Zbl
[7] A. Laurinčikas, R. Macaitien.{e}, “The discrete universality of the periodic Hurwitz zeta-function”, Integral Transforms Spec. Funct., 20:9-10 (2009), 673–686 | MR | Zbl