A Remark on the Distribution of the Values of the Riemann Zeta Function
Matematičeskie zametki, Tome 102 (2017) no. 2, pp. 247-254
Voir la notice de l'article provenant de la source Math-Net.Ru
On a certain probability space, an analytic random element and a random variable both related to the Riemann zeta function and a measurable measure preserving transformation are considered. For these entities, an equality generalizing the classical ergodic Birkhoff–Khinchine theorem is proved.
Keywords:
Riemann zeta function, limit theorem, uniform distribution, Birkhoff–Khinchine theorem.
@article{MZM_2017_102_2_a6,
author = {A. P. Laurin\v{c}ikas},
title = {A {Remark} on the {Distribution} of the {Values} of the {Riemann} {Zeta} {Function}},
journal = {Matemati\v{c}eskie zametki},
pages = {247--254},
publisher = {mathdoc},
volume = {102},
number = {2},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a6/}
}
A. P. Laurinčikas. A Remark on the Distribution of the Values of the Riemann Zeta Function. Matematičeskie zametki, Tome 102 (2017) no. 2, pp. 247-254. http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a6/