A Remark on the Distribution of the Values of the Riemann Zeta Function
Matematičeskie zametki, Tome 102 (2017) no. 2, pp. 247-254.

Voir la notice de l'article provenant de la source Math-Net.Ru

On a certain probability space, an analytic random element and a random variable both related to the Riemann zeta function and a measurable measure preserving transformation are considered. For these entities, an equality generalizing the classical ergodic Birkhoff–Khinchine theorem is proved.
Keywords: Riemann zeta function, limit theorem, uniform distribution, Birkhoff–Khinchine theorem.
@article{MZM_2017_102_2_a6,
     author = {A. P. Laurin\v{c}ikas},
     title = {A {Remark} on the {Distribution} of the {Values} of the {Riemann} {Zeta} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {247--254},
     publisher = {mathdoc},
     volume = {102},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a6/}
}
TY  - JOUR
AU  - A. P. Laurinčikas
TI  - A Remark on the Distribution of the Values of the Riemann Zeta Function
JO  - Matematičeskie zametki
PY  - 2017
SP  - 247
EP  - 254
VL  - 102
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a6/
LA  - ru
ID  - MZM_2017_102_2_a6
ER  - 
%0 Journal Article
%A A. P. Laurinčikas
%T A Remark on the Distribution of the Values of the Riemann Zeta Function
%J Matematičeskie zametki
%D 2017
%P 247-254
%V 102
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a6/
%G ru
%F MZM_2017_102_2_a6
A. P. Laurinčikas. A Remark on the Distribution of the Values of the Riemann Zeta Function. Matematičeskie zametki, Tome 102 (2017) no. 2, pp. 247-254. http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a6/

[1] U. Krengel, Ergodic Theorems, De Gruyter Stud. Math., 6, Walter de Gruyter, Berlin, 1985 | MR | Zbl

[2] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Math. Appl., 352, Kluwer Acad. Publ., Dordrecht, 1996 | MR | Zbl

[3] P. Billingsley, Convergence of Probability Measures, John Wiley Sons, New York, 1968 | MR | Zbl

[4] A. Dubickas, A. Laurinčikas, “Distribution modulo $1$ and the discrete universality of the Riemann zeta-function”, Abh. Math. Semin. Univ. Hambg., 86:1 (2016), 79–87 | DOI | MR | Zbl

[5] L. Kuipers, H. Niederreiter, Uniform Distribution of Sequences, Wiley-Interscience, New York, 1974 | MR | Zbl

[6] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math., 227, Springer-Verlag, Berlin, 1971 | DOI | MR | Zbl

[7] A. Laurinčikas, R. Macaitien.{e}, “The discrete universality of the periodic Hurwitz zeta-function”, Integral Transforms Spec. Funct., 20:9-10 (2009), 673–686 | MR | Zbl