$\mathrm{MF}$-Property for Countable Discrete Groups
Matematičeskie zametki, Tome 102 (2017) no. 2, pp. 231-246

Voir la notice de l'article provenant de la source Math-Net.Ru

We say that a group has an $\mathrm{MF}$-property if it can be embedded in the group of unitary elements of the $C^*$-algebra $\prod M_n/\bigoplus M_n$. In the present paper we prove the $\mathrm{MF}$-property for the Baumslag group ${\langle a,b \mid a^{a^b}=a^2\rangle}$ and also some general assertions concerning this property.
Keywords: countable groups, representations, $C^*$-algebras, Baumslag group.
@article{MZM_2017_102_2_a5,
     author = {A. I. Korchagin},
     title = {$\mathrm{MF}${-Property} for {Countable} {Discrete} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {231--246},
     publisher = {mathdoc},
     volume = {102},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a5/}
}
TY  - JOUR
AU  - A. I. Korchagin
TI  - $\mathrm{MF}$-Property for Countable Discrete Groups
JO  - Matematičeskie zametki
PY  - 2017
SP  - 231
EP  - 246
VL  - 102
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a5/
LA  - ru
ID  - MZM_2017_102_2_a5
ER  - 
%0 Journal Article
%A A. I. Korchagin
%T $\mathrm{MF}$-Property for Countable Discrete Groups
%J Matematičeskie zametki
%D 2017
%P 231-246
%V 102
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a5/
%G ru
%F MZM_2017_102_2_a5
A. I. Korchagin. $\mathrm{MF}$-Property for Countable Discrete Groups. Matematičeskie zametki, Tome 102 (2017) no. 2, pp. 231-246. http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a5/