Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_102_2_a3, author = {A. S. Ivanov and A. M. Savchuk}, title = {Trace of {Order~}$(-1)$ for a {String} with {Singular} {Weight}}, journal = {Matemati\v{c}eskie zametki}, pages = {197--215}, publisher = {mathdoc}, volume = {102}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a3/} }
A. S. Ivanov; A. M. Savchuk. Trace of Order~$(-1)$ for a String with Singular Weight. Matematičeskie zametki, Tome 102 (2017) no. 2, pp. 197-215. http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a3/
[1] M. G. Krein, “Ob odnom obobschenii issledovanii Stiltesa”, DAN SSSR, 87:6 (1952), 881–884 | MR | Zbl
[2] M. G. Krein, I. S. Kats, “On the spectral functions of the string”, Amer. Math. Soc. Transl., 103:2 (1974), 19–102 | Zbl
[3] W. Feller, “Generalized second order differential operators and their lateral conditions”, Illinois J. Math., 1 (1957), 459–504 | MR | Zbl
[4] Y. Kasahara, “Spectral theory of generalized second order differential operators and its applications to Markov processes”, Japan J. Math. (N.S.), 1:1 (1975), 67–84 | MR | Zbl
[5] H. Dym, H. P. McKean, Gaussian Processes, Function Theory and the Inverse Spectral Problem, Probab. and Math. Stat., 31, Academic Press, New York, 1976 | MR | Zbl
[6] I. S. Kats, “The spectral theory of a string”, Ukrainian Math. J., 46:3 (1994), 159–182 | DOI | MR | Zbl
[7] S. Kotani, S. Watanabe, “Krein's spectral theory of strings and generalized diffusion processes”, Functional Analysis in Markov Processes, Lecture Notes in Math., 923, Springer-Verlag, Berlin, 1982, 235–259 | DOI | MR | Zbl
[8] A. Fleige, Spectral Theory of Indefinite Krein–Feller Differential Operators, Math. Res., 98, Akademie Verlag, Berlin, 1996 | MR | Zbl
[9] A. Zettl, Sturm–Liouville Theory, Math. Surveys Monogr., 121, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl
[10] J. Eckhardt, A. Kostenko, “The inverse spectral problem for indefinite strings”, Invent. Math., 204:3 (2016), 939–977 | DOI | MR | Zbl
[11] A. Constantin, V. S. Gerdjikov, R. I. Ivanov, “Inverse scattering transform for the Camassa–Holm equation”, Inverse Problems, 22:6 (2006), 2197–2207 | DOI | MR | Zbl
[12] C. Bennewitz, B. M. Brown, R. Weikard, “Scattering and inverse scattering for a left-definite Sturm–Liouville problem”, J. Differential Equations, 253:8 (2012), 2380–2419 | DOI | MR | Zbl
[13] J. Eckhardt, A. Kostenko, “An isospectral problem for global conservative multi-peakon solutions of the Camassa–Holm equation”, Comm. Math. Phys., 329:3 (2014), 893–918 | DOI | MR | Zbl
[14] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI | MR | Zbl
[15] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s potentsialami-raspredeleniyami”, Tr. MMO, 64 (2003), 159–212 | MR | Zbl
[16] A. A. Vladimirov, I. A. Sheipak, “Samopodobnye funktsii v prostranstve $L_2[0,1]$ i zadacha Shturma–Liuvillya s singulyarnym indefinitnym vesom”, Matem. sb., 197:11 (2006), 13–30 | DOI | MR | Zbl
[17] A. A. Vladimirov, I. A. Sheipak, “Indefinitnaya zadacha Shturma–Liuvillya dlya nekotorykh klassov samopodobnykh singulyarnykh vesov”, Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz, Tr. MIAN, 255, Nauka, M., 2006, 88–98 | MR | Zbl
[18] I. A. Sheipak, “O konstruktsii i nekotorykh svoistvakh samopodobnykh funktsii v prostranstvakh $L_p[0,1]$”, Matem. zametki, 81:6 (2007), 924–938 | DOI | MR | Zbl
[19] A. A. Vladimirov, I. A. Sheipak, “Asimptotika sobstvennykh znachenii zadachi Shturma–Liuvillya s diskretnym samopodobnym vesom”, Matem. zametki, 88:5 (2010), 662–672 | DOI | MR | Zbl
[20] A. A. Vladimirov, I. A. Sheipak, “O zadache Neimana dlya uravneniya Shturma–Liuvillya s samopodobnym vesom kantorovskogo tipa”, Funkts. analiz i ego pril., 47:4 (2013), 18–29 | DOI | MR | Zbl
[21] M. Solomyak, E. Verbitsky, “On a spectral problem related to self-similar measures”, Bull. London Math. Soc., 27:3 (1995), 242–248 | DOI | MR | Zbl
[22] A. I. Nazarov, “Logarifmicheskaya asimptotika malykh uklonenii dlya nekotorykh gaussovskikh sluchainykh protsessov v $L_2$-norme otnositelno samopodobnoi mery”, Veroyatnost i statistika. 7, Zap. nauchn. sem. POMI, 311, POMI, SPb., 2004, 190–213 | MR | Zbl
[23] A. A. Vladimirov, “Nekotorye zamechaniya ob integralnykh kharakteristikakh vinerovskogo protsessa”, Dalnevost. matem. zhurn., 15:2 (2015), 156–165 | Zbl
[24] V. A. Sadovnichii, V. E. Podolskii, “Sledy operatorov”, UMN, 61:5 (371) (2006), 89–156 | DOI | MR | Zbl
[25] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[26] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR | Zbl
[27] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR | Zbl
[28] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl
[29] A. A. Vladimirov, “K ostsillyatsionnoi teorii zadachi Shturma–Liuvillya s singulyarnymi koeffitsientami”, Zh. vychisl. matem. i matem. fiz., 49:9 (2009), 1609–1621 | MR | Zbl
[30] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR | Zbl
[31] R. Oloff, “Interpolation zwischen den Klassen $\mathfrak S_p$ von Operatoren in Hilberträumen”, Math. Nachr., 46 (1970), 209–218 | DOI | MR | Zbl