Asymptotics of Diagonal Hermite--Pad\'e Polynomials for the Collection of Exponential Functions
Matematičeskie zametki, Tome 102 (2017) no. 2, pp. 302-315.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotics of diagonal Hermite–Padé polynomials of the first kind is studied for the system of exponential functions $\{e^{\lambda_pz}\}_{p=0}^k$, where $\lambda_0=0$ and the other $\lambda_p$ are the roots of the equation $\xi^k=1$. The theorems proved in the paper supplement the well-known results due to Borwein, Wielonsky, Stahl, Astaf'eva, and Starovoitov obtained for the case in which $\{\lambda_p\}_{p=0}^k$ are different real numbers.
Keywords: system of exponentials, Hermite–Padé approximants of the first kind, asymptotic equalities, Laplace method, saddle-point method.
@article{MZM_2017_102_2_a11,
     author = {A. P. Starovoitov},
     title = {Asymptotics of {Diagonal} {Hermite--Pad\'e} {Polynomials} for the {Collection} of {Exponential} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {302--315},
     publisher = {mathdoc},
     volume = {102},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a11/}
}
TY  - JOUR
AU  - A. P. Starovoitov
TI  - Asymptotics of Diagonal Hermite--Pad\'e Polynomials for the Collection of Exponential Functions
JO  - Matematičeskie zametki
PY  - 2017
SP  - 302
EP  - 315
VL  - 102
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a11/
LA  - ru
ID  - MZM_2017_102_2_a11
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%T Asymptotics of Diagonal Hermite--Pad\'e Polynomials for the Collection of Exponential Functions
%J Matematičeskie zametki
%D 2017
%P 302-315
%V 102
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a11/
%G ru
%F MZM_2017_102_2_a11
A. P. Starovoitov. Asymptotics of Diagonal Hermite--Pad\'e Polynomials for the Collection of Exponential Functions. Matematičeskie zametki, Tome 102 (2017) no. 2, pp. 302-315. http://geodesic.mathdoc.fr/item/MZM_2017_102_2_a11/

[1] G. Lopes Lagomasino, S. Medina Peralta, U. Fidalgo Prieto, “Approksimatsii Ermita–Pade dlya nekotorykh sistem meromorfnykh funktsii”, Matem. sb., 206:2 (2015), 57–76 | DOI | MR | Zbl

[2] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Sluchainye matritsy s vneshnim istochnikom i asimptotika sovmestno ortogonalnykh mnogochlenov”, Matem. sb., 202:2 (2011), 3–56 | DOI | MR | Zbl

[3] A. I. Aptekarev, V. G. Lysov, “Sistemy markovskikh funktsii, generiruemye grafami, i asimptotika ikh approksimatsii Ermita–Pade”, Matem. sb., 201:2 (2010), 29–78 | DOI | MR | Zbl

[4] A. I. Aptekarev, V. A. Kalyagin, E. B. Saff, “Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials”, Constr. Approx., 30:2 (2009), 175–223 | DOI | MR | Zbl

[5] A. I. Aptekarev, “Asimptotika approksimatsii Ermita–Pade dlya pary funktsii s tochkami vetvleniya”, Dokl. AN, 422:4 (2008), 443–445 | MR | Zbl

[6] H. Stahl, “Asymptotics for quadratic Hermite–Padé polynomials associated with the exponential function”, Electron. Trans. Numer. Anal., 14 (2002), 193–220 | MR | Zbl

[7] H. Stahl, “Asymptotic distributions of zeros of quadratic Hermite–Padé polynomials associated with the exponential function”, Constr. Approx., 23:2 (2006), 121–164 | DOI | MR | Zbl

[8] A. Kuijlaars, H. Stahl, W. Van Assche, F. Wielonsky, “Asymptotique des approximants de Hermite–Padé quadratiques de la fonction exponentielle et problèmes de Riemann–Hilbert”, C. R. Math. Acad. Sci. Paris, 336:11 (2003), 893–896 | DOI | MR | Zbl

[9] A. B J. Kuijlaars, H. Stahl, W. Van Assche, F. Wielonsky, “Type II Hermite–Padé approximation to the exponential function”, J. Comput. Appl. Math., 207:2 (2007), 227–244 | DOI | MR | Zbl

[10] A. B. J. Kuijlaars, W. Van Assche, F. Wielonsky, “Quadratic Hermite–Padé approximation to the exponential function: a Riemann-Hiebert approach”, Constr. Approx., 21:3 (2005), 351–412 | DOI | MR | Zbl

[11] F. Wielonsky, “Asymptotics of diagonal Hermite–Padé approximants to $e^z$”, J. Approx. Theory, 90:2 (1997), 283–298 | DOI | MR | Zbl

[12] P. B. Borwein, “Quadratic Hermite–Padé approximation to the exponential function”, Const. Approx., 2:4 (1986), 291–302 | DOI | MR | Zbl

[13] A. I. Aptekarev, A. E. Koielaars, “Approksimatsii Ermita–Pade i ansambli sovmestno ortogonalnykh mnogochlenov”, UMN, 66:6 (402) (2011), 123–190 | DOI | MR | Zbl

[14] B. Beckermann, V. Kalyagin, Ana C. Matos, F. Wielonsky, “How well does the Hermite–Padé approximation smooth the Gibbs phenomenon?”, Math. Comp., 80:274 (2011), 931–958 | DOI | MR | Zbl

[15] J. P. Boyd, “Chebyshev expansion on intervals with branch points with application to the root of Kepler's equation: a Chebyshev–Hermite–Padé method”, J. Comput. Appl. Math., 223:2 (2009), 693–702 | DOI | MR | Zbl

[16] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Globalnyi rezhim raspredeleniya sobstvennykh znachenii sluchainykh matrits s angarmonicheskim potentsialom i vneshnim istochnikom”, TMF, 159:1 (2009), 34–57 | DOI | MR | Zbl

[17] Ratsionalnye priblizheniya postoyannoi Eilera i rekurrentnye sootnosheniya, Sbornik statei, Sovr. probl. matem., 9, ed. A. I. Aptekarev, MIAN, M., 2007 | DOI

[18] A. I. Aptekarev, P. M. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source. II”, Comm. Math. Phys., 259:2 (2005), 367–389 | DOI | MR | Zbl

[19] F. Wielonsky, “Riemann–Hilbert analysis and uniform convergence of rational interpolants to the exponential function”, J. Approx. Theory, 131:1 (2004), 100–148 | DOI | MR | Zbl

[20] V. N. Sorokin, “Tsiklicheskie grafy i teorema Aperi”, UMN, 57:3 (345) (2002), 99–134 | DOI | MR | Zbl

[21] V. A. Kalyagin, “Approksimatsii Ermita–Pade i spektralnyi analiz nesimmetrichnykh operatorov”, Matem. sb., 185:6 (1994), 79–100 | MR | Zbl

[22] E. M. Nikishin, V. N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl

[23] S. P. Suetin, “Raspredelenie nulei polinomov Pade i analiticheskoe prodolzhenie”, UMN, 70:5 (425) (2015), 121–174 | DOI | MR | Zbl

[24] A. I. Aptekarev, V. I. Buslaev, A. Martines-Finkelshtein, S. P. Suetin, “Approksimatsii Pade, nepreryvnye drobi i ortogonalnye mnogochleny”, UMN, 66:6 (402) (2011), 37–122 | DOI | MR | Zbl

[25] W. Van Assche, “Multiple orthogonal polynomials, irrationality and transcendence”, Continued Fractions: From Analytic Number Theory to Constructive Approximation, Contemp. Math., 236, Amer. Math. Soc., Providence, RI, 1999, 325–342 | MR | Zbl

[26] A. I. Aptekarev, H. Stahl, “Asymptotics of Hermite–Padé polynomials”, Progress in Approximation Theory, Springer Ser. Comput. Math., 19, Springer-Verlag, New York, 1992, 127–167 | MR | Zbl

[27] G. V. Chudnovsky, “Hermite–Padé approximations to exponential functions and elementary estimates of the measure of irrationality of $\pi$”, The Riemann Problem, Complete Integrability and Arithmetic Applications, Lecture Notes in Math., 925, Springer-Verlag, New York, 1982, 299–322 | DOI | MR | Zbl

[28] A. P. Starovoitov, E. P. Kechko, “Verkhnie otsenki modulei nulei approksimatsii Ermita–Pade dlya nabora eksponentsialnykh funktsii”, Matem. zametki, 99:3 (2016), 409–420 | DOI | MR | Zbl

[29] A. V. Astafeva, A. P. Starovoitov, “Approksimatsii Ermita–Pade eksponentsialnykh funktsii”, Matem. sb., 207:6 (2016), 3–26 | DOI | MR

[30] A. P. Starovoitov, “Kvadratichnye approksimatsii Ermita–Pade eksponentsialnykh funktsii”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 14:4 (1) (2014), 387–395 | Zbl

[31] A. P. Starovoitov, G. N. Kazimirov, M. V. Sidortsov, “Asimptotika approksimatsii Ermita–Pade eksponentsialnykh funktsii s kompleksnymi mnozhitelyami v pokazatelyakh eksponent”, PFMT, 2016, no. 2 (27), 61–67 | Zbl

[32] A. I. Aptekarev, “O skhodimosti ratsionalnykh approksimatsii k naboru eksponent”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1981, no. 1, 68–74 | MR | Zbl

[33] A. I. Aptekarev, “Ob approksimatsiyakh Pade k naboru $\{{}_1F_1(1,c;\lambda_iz)\}^k_{i=1}$”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1981, no. 2, 58–62 | MR | Zbl

[34] A. P. Starovoitov, “Ermitovskaya approksimatsiya dvukh eksponent”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:1 (2) (2013), 87–91

[35] A. P. Starovoitov, N. A. Starovoitova, “Approksimatsii Pade funktsii Mittag-Lefflera”, Matem. sb., 198:7 (2007), 109–122 | DOI | MR | Zbl

[36] A. P. Starovoitov, “Approksimatsii Ermita–Pade dlya sistemy funktsii Mittag-Lefflera”, PFMT, 2013, no. 1 (14), 81–87 | Zbl

[37] A. P. Starovoitov, “Ob asimptotike approksimatsii Ermita–Pade dlya sistemy funktsii Mittag-Lefflera”, Izv. vuzov. Matem., 2014, no. 9, 59–68 | Zbl

[38] V. A. Kalyagin, “Ob odnom klasse polinomov, opredelyaemykh dvumya sootnosheniyami ortogonalnosti”, Matem. sb., 110 (152):4 (12) (1979), 609–627 | MR | Zbl

[39] Yu. V. Sidorov, M. V. Fedoryuk, M. I. Shabunin, Lektsii po teorii funktsii kompleksnogo peremennogo, Nauka, M., 1989 | MR | Zbl

[40] E. B. Saff, R. S. Varga, “On the zeros and poles of Pade approximations to $e^z$. II”, Padé and Rational Approximations, Academic Press, New York, 1977, 195–213 | MR | Zbl