Generalized Quasi-Isometries on Smooth Riemannian Manifolds
Matematičeskie zametki, Tome 102 (2017) no. 1, pp. 17-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary behavior of finitely bi-Lipschitz mappings on smooth Riemannian manifolds is studied.
Keywords: Riemannian manifold, lower $Q$-homeomorphisms, finitely bi-Lipschitz homeomorphisms, boundary behavior.
Mots-clés : $p$-moduli
@article{MZM_2017_102_1_a2,
     author = {E. S. Afanasjeva},
     title = {Generalized {Quasi-Isometries} on {Smooth} {Riemannian} {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {17--27},
     publisher = {mathdoc},
     volume = {102},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a2/}
}
TY  - JOUR
AU  - E. S. Afanasjeva
TI  - Generalized Quasi-Isometries on Smooth Riemannian Manifolds
JO  - Matematičeskie zametki
PY  - 2017
SP  - 17
EP  - 27
VL  - 102
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a2/
LA  - ru
ID  - MZM_2017_102_1_a2
ER  - 
%0 Journal Article
%A E. S. Afanasjeva
%T Generalized Quasi-Isometries on Smooth Riemannian Manifolds
%J Matematičeskie zametki
%D 2017
%P 17-27
%V 102
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a2/
%G ru
%F MZM_2017_102_1_a2
E. S. Afanasjeva. Generalized Quasi-Isometries on Smooth Riemannian Manifolds. Matematičeskie zametki, Tome 102 (2017) no. 1, pp. 17-27. http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a2/

[1] E. Kartan, Geometriya rimanovykh prostranstv, ONTI NKTP SSSR, M., 1936

[2] E. G. Poznyak, E. V. Shikin, Differentsialnaya geometriya. Pervoe znakomstvo, Izd-vo Mosk. un-ta, M., 1990 | Zbl

[3] J. M. Lee, Riemannian Manifolds. An Introduction to Curvature, Grad. Texts in Math., 176, Springer, New York, 1997 | MR | Zbl

[4] P. K. Rashevskii, Rimanova geometriya i tenzornyi analiz, GITTL, M., 1953 | MR | Zbl

[5] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[6] D. A. Kovtonyuk, V. I. Ryazanov, “K teorii nizhnikh $Q$-gomeomorfizmov”, Ukr. matem. vestnik, 5:2 (2008), 159–184

[7] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in Modern Mapping Theory, Springer Monogr. Math., Springer, New York, 2009 | MR | Zbl

[8] F. W. Gehring, “Quasiconformal mappings”, Complex Analysis and Its Applications, Vol. II, Internat. Atomic Energy Agency, Vienna, 1976, 213–268 | MR | Zbl

[9] A. Golberg, R. Salimov, “Topological mappings of integrally bounded $p$-moduli”, Ann. Univ. Buchar. Math. Ser., 3:1 (2012), 49–66 | MR | Zbl

[10] E. S. Afanaseva, V. I. Ryazanov, R. R. Salimov, “Ob otobrazheniyakh v klassakh Orlicha–Soboleva na rimanovykh mnogoobraziyakh”, Ukr. matem. vestn., 8:3 (2011), 319–342

[11] J. Hesse, “A $p$-extremal length and $p$-capacity equality”, Ark. Mat., 13 (1975), 131–144 | DOI | MR | Zbl

[12] W. P. Ziemer, “Extremal length and $p$-capacity”, Michigan Math. J., 16 (1969), 43–51 | DOI | MR | Zbl

[13] E. S. Afanaseva, R. R. Salimov, “O vzaimosvyazi koltsevykh i nizhnikh $Q$-gomeomorfizmov na granitse”, Tr. IPMM NAN Ukrainy, 23, IPMM NAN Ukrainy, Donetsk, 2011, 15–22 | MR | Zbl

[14] Th. Ransford, Potential Theory in the Complex Plane, London Math. Soc. Stud. Texts, 28, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[15] D. A. Kovtonyuk, V. I. Ryazanov, R. R. Salimov, E. A. Sevost'yanov, “On mappings in the Orlicz–Sobolev classes”, Ann. Univ. Buchar. Math. Ser., 3:1 (2012), 67–78 | MR | Zbl

[16] D. A. Kovtonyuk, V. I. Ryazanov, R. R. Salimov, E. A. Sevostyanov, “K teorii klassov Orlicha–Soboleva”, Algebra i analiz, 25:6 (2013), 50–102 | MR | Zbl

[17] D. A. Kovtonyuk, V. I. Ryazanov, R. R. Salimov, E. A. Sevostyanov, “Granichnoe povedenie klassov Orlicha–Soboleva”, Matem. zametki, 95:4 (2014), 564–576 | DOI | MR | Zbl

[18] R. R. Salimov, “Nizhnie otsenki $p$-modulya i otobrazheniya klassa Soboleva”, Algebra i analiz, 26:6 (2014), 143–171

[19] D. A. Kovtonyuk, I. V. Petkov, V. I. Ryazanov, R. R. Salimov, “Granichnoe povedenie i zadacha Dirikhle dlya uravnenii Beltrami”, Algebra i analiz, 25:4 (2013), 101–124 | MR | Zbl

[20] D. Kovtonyk, V. Ryazanov, “On the theory of mappings with finite area distortion”, J. Anal. Math., 104 (2008), 291–306 | DOI | MR | Zbl

[21] H. Federer, Geometric Measure Theory, Die Grundlehren Math. Wiss., 153, Springer-Verlag, Berlin, 1969 | MR | Zbl

[22] K. Kuratovskii, Topologiya, T. 2, Mir, M., 1969 | MR

[23] L. Kovalev, J. Onninen, “Boundary values of mappings of finite distortion”, Future Trends in Geometric Function Theory, Rep. Univ. Jyväskylä Dep. Math. Stat., 92, Univ. Jyväskylä, Jyväskylä, 2003, 175–182 | MR | Zbl