Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_102_1_a12, author = {I. A. Shakirov}, title = {Asymptotic {Formulas} for {Lebesgue} {Functions} {Corresponding} to the {Family} of {Lagrange} {Interpolation} {Polynomials}}, journal = {Matemati\v{c}eskie zametki}, pages = {133--147}, publisher = {mathdoc}, volume = {102}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a12/} }
TY - JOUR AU - I. A. Shakirov TI - Asymptotic Formulas for Lebesgue Functions Corresponding to the Family of Lagrange Interpolation Polynomials JO - Matematičeskie zametki PY - 2017 SP - 133 EP - 147 VL - 102 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a12/ LA - ru ID - MZM_2017_102_1_a12 ER -
I. A. Shakirov. Asymptotic Formulas for Lebesgue Functions Corresponding to the Family of Lagrange Interpolation Polynomials. Matematičeskie zametki, Tome 102 (2017) no. 1, pp. 133-147. http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a12/
[1] V. L. Goncharov, Teoriya interpolirovaniya i priblizheniya funktsii, GTTI, M.–L., 1934
[2] N. I. Akhiezer, Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR | Zbl
[3] I. P. Natanson, Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949 | MR | Zbl
[4] P. P. Korovkin, Lineinye operatory i teoriya priblizhenii, Fizmatgiz, M., 1959 | Zbl
[5] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatlit, M., 1960 | MR
[6] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR | Zbl
[7] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, Izd-vo Mosk. un-ta, M., 1976 | MR
[8] N. P. Korneichuk, Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976 | MR
[9] V. K. Dzyadyk, Approksimatsionnye metody resheniya differentsialnykh i integralnykh uravnenii, Naukova dumka, Kiev, 1988 | MR | Zbl
[10] A. A. Privalov, Teoriya interpolirovaniya funktsii, Kn. 1, Izd-vo Saratov. un-ta, Saratov, 1990 | MR | Zbl
[11] K. I. Babenko, Osnovy chislennogo analiza, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2002
[12] I. A. Shakirov, “O trigonometricheskom interpolyatsionnom polinome Lagranzha, imeyuschem minimalnuyu normu kak operator iz $C_{2\pi}$ v $C_{2\pi}$”, Izv. vuzov. Matem., 2010, no. 10, 60–68 | MR | Zbl
[13] A. Zigmund, Trigonometricheskie ryady, T. 2, Mir, M., 1965 | MR | Zbl
[14] I. A. Shakirov, “Polnoe issledovanie funktsii Lebega, sootvetstvuyuschikh klassicheskim interpolyatsionnym polinomam Lagranzha”, Izv. vuzov. Matem., 2011, no. 10, 80–88 | MR | Zbl
[15] I. A. Shakirov, “O funktsiyakh Lebega, sootvetstvuyuschikh semeistvu interpolyatsionnykh polinomov Lagranzha”, Izv. vuzov. Matem., 2013, no. 7, 77–89 | MR | Zbl
[16] I. A. Shakirov, “O fundamentalnykh kharakteristikakh semeistva interpolyatsionnykh polinomov Lagranzha”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:1 (2) (2013), 99–104
[17] T. Rivlin, “The Lebesgue constants for polynomial interpolation”, Functional Analysis and its Application, Lecture Notes in Math., 399, Springer-Verlag, Berlin, 1974, 422–437 | DOI | MR | Zbl
[18] L. Brutman, “Lebesgue functions for polynomial interpolation – a survey”, Ann. Numer. Math., 4 (1997), 111–127 | MR | Zbl
[19] P. Vertesi, “Optimal Lebesgue constants for Lagrange interpolation”, SIAM J. Numer. Anal., 27:5 (1990), 1322–1331 | DOI | MR | Zbl
[20] R. Gunttner, “Evaluation of Lebesgue constant”, SIAM J. Numer. Anal., 17:4 (1980), 512–520 | DOI | MR | Zbl
[21] I. A. Shakirov, “O vliyanii vybora uzlov lagranzhevoi interpolyatsii na tochnye i priblizhennye znacheniya konstant Lebega”, Sib. matem. zhurn., 55:6 (2014), 1404–1423 | MR | Zbl
[22] I. A. Shakirov, “Kvadraturnye formuly dlya singulyarnogo integrala so sdvigom i ikh prilozheniya”, Differents. uravneniya, 27:4 (1991), 682–691 | MR | Zbl
[23] I. A. Shakirov, “Tochnye znacheniya norm v $L_2[0,2\pi]$ polinomov Lagranzha, opredelennykh po chetnomu chislu uzlov”, Izv. vuzov. Sev.-Kavkazskii region. Estestv. nauki, 2011, Spetsvypusk, 77–79