Asymptotic Formulas for Lebesgue Functions Corresponding to the Family of Lagrange Interpolation Polynomials
Matematičeskie zametki, Tome 102 (2017) no. 1, pp. 133-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic behavior of Lebesgue functions of trigonometric Lagrange interpolation polynomials constructed on an even number of nodes is studied. For these functions, asymptotic formulas involving concrete simplest trigonometric and algebraic-trigonometric polynomials were first obtained.
Mots-clés : Lagrange polynomials, Lebesgue functions and constants
Keywords: asymptotic formula for a Lebesgue function, error function.
@article{MZM_2017_102_1_a12,
     author = {I. A. Shakirov},
     title = {Asymptotic {Formulas} for {Lebesgue} {Functions} {Corresponding} to the {Family} of {Lagrange} {Interpolation} {Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {133--147},
     publisher = {mathdoc},
     volume = {102},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a12/}
}
TY  - JOUR
AU  - I. A. Shakirov
TI  - Asymptotic Formulas for Lebesgue Functions Corresponding to the Family of Lagrange Interpolation Polynomials
JO  - Matematičeskie zametki
PY  - 2017
SP  - 133
EP  - 147
VL  - 102
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a12/
LA  - ru
ID  - MZM_2017_102_1_a12
ER  - 
%0 Journal Article
%A I. A. Shakirov
%T Asymptotic Formulas for Lebesgue Functions Corresponding to the Family of Lagrange Interpolation Polynomials
%J Matematičeskie zametki
%D 2017
%P 133-147
%V 102
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a12/
%G ru
%F MZM_2017_102_1_a12
I. A. Shakirov. Asymptotic Formulas for Lebesgue Functions Corresponding to the Family of Lagrange Interpolation Polynomials. Matematičeskie zametki, Tome 102 (2017) no. 1, pp. 133-147. http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a12/

[1] V. L. Goncharov, Teoriya interpolirovaniya i priblizheniya funktsii, GTTI, M.–L., 1934

[2] N. I. Akhiezer, Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR | Zbl

[3] I. P. Natanson, Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949 | MR | Zbl

[4] P. P. Korovkin, Lineinye operatory i teoriya priblizhenii, Fizmatgiz, M., 1959 | Zbl

[5] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatlit, M., 1960 | MR

[6] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR | Zbl

[7] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, Izd-vo Mosk. un-ta, M., 1976 | MR

[8] N. P. Korneichuk, Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976 | MR

[9] V. K. Dzyadyk, Approksimatsionnye metody resheniya differentsialnykh i integralnykh uravnenii, Naukova dumka, Kiev, 1988 | MR | Zbl

[10] A. A. Privalov, Teoriya interpolirovaniya funktsii, Kn. 1, Izd-vo Saratov. un-ta, Saratov, 1990 | MR | Zbl

[11] K. I. Babenko, Osnovy chislennogo analiza, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2002

[12] I. A. Shakirov, “O trigonometricheskom interpolyatsionnom polinome Lagranzha, imeyuschem minimalnuyu normu kak operator iz $C_{2\pi}$ v $C_{2\pi}$”, Izv. vuzov. Matem., 2010, no. 10, 60–68 | MR | Zbl

[13] A. Zigmund, Trigonometricheskie ryady, T. 2, Mir, M., 1965 | MR | Zbl

[14] I. A. Shakirov, “Polnoe issledovanie funktsii Lebega, sootvetstvuyuschikh klassicheskim interpolyatsionnym polinomam Lagranzha”, Izv. vuzov. Matem., 2011, no. 10, 80–88 | MR | Zbl

[15] I. A. Shakirov, “O funktsiyakh Lebega, sootvetstvuyuschikh semeistvu interpolyatsionnykh polinomov Lagranzha”, Izv. vuzov. Matem., 2013, no. 7, 77–89 | MR | Zbl

[16] I. A. Shakirov, “O fundamentalnykh kharakteristikakh semeistva interpolyatsionnykh polinomov Lagranzha”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:1 (2) (2013), 99–104

[17] T. Rivlin, “The Lebesgue constants for polynomial interpolation”, Functional Analysis and its Application, Lecture Notes in Math., 399, Springer-Verlag, Berlin, 1974, 422–437 | DOI | MR | Zbl

[18] L. Brutman, “Lebesgue functions for polynomial interpolation – a survey”, Ann. Numer. Math., 4 (1997), 111–127 | MR | Zbl

[19] P. Vertesi, “Optimal Lebesgue constants for Lagrange interpolation”, SIAM J. Numer. Anal., 27:5 (1990), 1322–1331 | DOI | MR | Zbl

[20] R. Gunttner, “Evaluation of Lebesgue constant”, SIAM J. Numer. Anal., 17:4 (1980), 512–520 | DOI | MR | Zbl

[21] I. A. Shakirov, “O vliyanii vybora uzlov lagranzhevoi interpolyatsii na tochnye i priblizhennye znacheniya konstant Lebega”, Sib. matem. zhurn., 55:6 (2014), 1404–1423 | MR | Zbl

[22] I. A. Shakirov, “Kvadraturnye formuly dlya singulyarnogo integrala so sdvigom i ikh prilozheniya”, Differents. uravneniya, 27:4 (1991), 682–691 | MR | Zbl

[23] I. A. Shakirov, “Tochnye znacheniya norm v $L_2[0,2\pi]$ polinomov Lagranzha, opredelennykh po chetnomu chislu uzlov”, Izv. vuzov. Sev.-Kavkazskii region. Estestv. nauki, 2011, Spetsvypusk, 77–79