Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_102_1_a11, author = {A. R. Chekhlov}, title = {On {Strongly} {Invariant} {Subgroups} of {Abelian} {Groups}}, journal = {Matemati\v{c}eskie zametki}, pages = {125--132}, publisher = {mathdoc}, volume = {102}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a11/} }
A. R. Chekhlov. On Strongly Invariant Subgroups of Abelian Groups. Matematičeskie zametki, Tome 102 (2017) no. 1, pp. 125-132. http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a11/
[1] G. Călugăreanu, “Strongly invariant subgroups”, Glasg. Math. J., 57:2 (2015), 431–443 | DOI | MR | Zbl
[2] D. Dikranjan, A. Giordano Bruno, L. Salce, S. Virili, “Fully inert subgroups of divisible Abelian groups”, J. Group Theory, 16:6 (2013), 915–939 | DOI | MR | Zbl
[3] D. Dikranjan, L. Salce, P. Zanardo, “Fully inert subgroups of free Abelian groups”, Period. Math. Hungar, 69:1 (2014), 69–78 | DOI | MR | Zbl
[4] B. Goldsmith, L. Salce, P. Zanardo, “Fully inert subgroups of Abelian $p$-groups”, J. Algebra, 419 (2014), 332–349 | DOI | MR | Zbl
[5] A. R. Chekhlov, “Vpolne inertnye podgruppy vpolne razlozhimykh grupp konechnogo ranga i ikh soizmerimost”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2016, no. 3 (41), 42–50 | DOI
[6] A. R. Chekhlov, “O vpolne inertnykh podgruppakh vpolne razlozhimykh grupp”, Matem. zametki, 101:2 (2017), 302–312 | DOI | MR
[7] A. R. Chekhlov, P. V. Danchev, “On abelian groups having all proper fully invariant subgroups isomorphic”, Comm. Algebra, 43:12 (2015), 5059–5073 | DOI | MR | Zbl