On a Nonlinear Third-Order Equation
Matematičeskie zametki, Tome 102 (2017) no. 1, pp. 6-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonclassical nonlinear third-order partial differential equation modeling nonstationary processes in a semiconductor medium is studied. Seven classes of exact solutions of this equation given as explicit, implicit, and quadrature formulas are constructed. It is shown that, among these solutions, there are some bounded globally with respect to time and some approaching infinity on finite time intervals. These results are of interest in view of the following property of initial boundary-value problems for the given equation. Here the method of energy estimates used in many papers to justify the boundedness or unboundedness of solutions does not provide sufficient conditions for the unboundedness of solutions on finite time intervals.
Keywords: nonlinear partial differential equations, blow-up of solutions
Mots-clés : exact solutions.
@article{MZM_2017_102_1_a1,
     author = {A. I. Aristov},
     title = {On a {Nonlinear} {Third-Order} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {6--16},
     publisher = {mathdoc},
     volume = {102},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a1/}
}
TY  - JOUR
AU  - A. I. Aristov
TI  - On a Nonlinear Third-Order Equation
JO  - Matematičeskie zametki
PY  - 2017
SP  - 6
EP  - 16
VL  - 102
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a1/
LA  - ru
ID  - MZM_2017_102_1_a1
ER  - 
%0 Journal Article
%A A. I. Aristov
%T On a Nonlinear Third-Order Equation
%J Matematičeskie zametki
%D 2017
%P 6-16
%V 102
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a1/
%G ru
%F MZM_2017_102_1_a1
A. I. Aristov. On a Nonlinear Third-Order Equation. Matematičeskie zametki, Tome 102 (2017) no. 1, pp. 6-16. http://geodesic.mathdoc.fr/item/MZM_2017_102_1_a1/

[1] A. B. Alshin, M. O. Korpusov, E. V. Yushkov, “Beguschaya volna kak reshenie nelineinogo uravneniya v poluprovodnikakh s silnoi prostranstvennoi dispersiei”, Zh. vychisl. matem. i matem. fiz., 48:5 (2008), 808–812 | MR | Zbl

[2] M. O. Korpusov, A. A. Panin, “Lokalnaya razreshimost i razrushenie resheniya dlya uravneniya Bendzhamena–Bona–Makhoni–Byurgersa s nelokalnym granichnym usloviem”, TMF, 175:2 (2013), 159–172 | DOI | MR | Zbl

[3] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007 | Zbl

[4] M. O. Korpusov, Razrushenie v neklassicheskikh nelokalnykh uravneniyakh, Knizhnyi dom “Librokom”, M., 2011

[5] N. Hayashi, E. I. Kaikina, P. I. Naumkin, I. A. Shishmarev, Asymptotics for Dissipative Nonlinear Equations, Lecture Notes in Math., 1884, Springer-Verlag, Berlin, 2006 | DOI | MR | Zbl

[6] A. D. Polyanin, V. F. Zaitsev, A. I. Zhurov, Metody resheniya nelineinykh uravnenii matematicheskoi fiziki i mekhaniki, Fizmatlit, M., 2005

[7] N. A. Kudryashov, Metody nelineinoi matematicheskoi fiziki, Izd. dom “Intellekt”, Dolgoprudnyi, 2010

[8] A. D. Polyanin, V. F. Zaitsev, Spravochnik po nelineinym uravneniyam matematicheskoi fiziki, Fizmatlit, M., 2002 | Zbl

[9] A. I. Aristov, “Ob odnom neklassicheskom integro-differentsialnom uravnenii”, Differents. uravneniya, 51:8 (2015), 1019–1026 | DOI | MR | Zbl