Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_101_6_a4, author = {E. V. Zhuzhoma and V. S. Medvedev}, title = {Saddle-Type {Solenoidal} {Basis} {Sets}}, journal = {Matemati\v{c}eskie zametki}, pages = {843--853}, publisher = {mathdoc}, volume = {101}, number = {6}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a4/} }
E. V. Zhuzhoma; V. S. Medvedev. Saddle-Type Solenoidal Basis Sets. Matematičeskie zametki, Tome 101 (2017) no. 6, pp. 843-853. http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a4/
[1] L. Vietoris, “Über den höheren Zusammenhang kompakter Räume und Klasse von zusammenhangstreuen Addildungen”, Math. Ann., 97 (1927), 454–472 | DOI | MR | Zbl
[2] D. von Dantzig, “Über topologisch homogene Kontinua”, Fund. Math., 15 (1930), 102–125 | Zbl
[3] F. Takens, “Multiplications in solenoids as hyperbolic attractors”, Topology Appl., 152:3 (2005), 219–225 | DOI | MR | Zbl
[4] J. M. Aarts, R. J. Fokkink, “The classification of solenoids”, Proc. Amer. Math. Soc., 111:4 (1991), 1161–1163 | DOI | MR | Zbl
[5] R. H. Bing, “A simple closed curve is the only homogeneous bounded plane continuum that contains an arc”, Canadian J. Math., 12 (1960), 209–230 | DOI | MR | Zbl
[6] R. H. Bing, “Embedding circle-line continua in the plane”, Canadian J. Math., 14 (1962), 113–128 | DOI | MR | Zbl
[7] V. V. Nemytskii, V. V. Stepanov, Kachestvennaya teoriya differentsialnykh uravnenii, OGIZ, M., 1947 | MR | Zbl
[8] I. Kan, “Strange attractors of uniform flows”, Trans. of Amer. Math. Soc., 293:1 (1986), 135–159 | DOI | MR | Zbl
[9] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73 (1967), 747–817 | DOI | MR | Zbl
[10] D. V. Anosov, “Gladkie dinamicheskie sistemy. Gl. 1. Iskhodnye ponyatiya”, Dinamicheskie sistemy – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 1, VINITI, M., 1985, 156–178
[11] D. V. Anosov, V. V. Solodov, “Dinamicheskie sistemy s giperbolicheskim povedeniem. Gl. 1. Giperbolicheskie mnozhestva”, Dinamicheskie sistemy – 9, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 66, VINITI, M., 1991, 12–99 | MR | Zbl
[12] Yu. S. Ilyashenko, L. Veigu, Nelokalnye bifurkatsii, MTsNMO-CheRo, M., 1999
[13] S. Kh. Aranson, G. R. Belitsky, E. V. Zhuzhoma, Introduction to the Qualitative Theory of Dynamical Systems on Surfaces, Transl. Math. Monogr., 153, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl
[14] C. Robinson, Dynamical Systems. Stability, Symbolic Dynamics, and Chaos, Studies in Adv. Math., CRC Press, Boca Raton, FL, 1999 | MR | Zbl
[15] D. Turaev, L. P. Shilnikov, “O katastrofakh golubogo neba”, Dokl. AN, 342:5 (1995), 596–599 | MR | Zbl
[16] H. Bothe, “The ambient structure of expanding attractors. II. Solenoids in 3-manifolds”, Math. Nachr., 112 (1983), 69–102 | DOI | MR | Zbl
[17] B. Jiang, Y. Ni, Sh. Wang, “$3$-manifolds that admit knotted solenoids as attractors”, Trans. Amer. Math. Soc., 356:11 (2004), 4371–4382 | DOI | MR | Zbl
[18] M. Jiming, Y. Bin, “The realization of Smale solenoid type attractors in 3-manifolds”, Topology Appl., 154:17 (2007), 3021–3031 | DOI | MR | Zbl
[19] I. Klapper, L.-S. Young, “Rigorous bounds of the fast dynamo growth rate involving topological entropy”, Comm. Math. Phys., 173:3 (1995), 623–646 | DOI | MR | Zbl
[20] V. I. Arnold, B. A.Khesin, Topologicheskie metody v gidrodinamike, MTsNMO, M., 2007
[21] S. I. Vainshtein, Ya. B. Zeldovich, “O proiskhozhdenii magnitnykh polei v astrofizike (Turbulentnye mekhanizmy «dinamo»)”, UFN, 106:2 (1972), 431–457 | DOI
[22] R. Bowen, “Topological entropy and axiom A”, Global Analysis, Proc. Sympos. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 23–42 | MR | Zbl