A Hybrid Fixed-Point Theorem for Set-Valued Maps
Matematičeskie zametki, Tome 101 (2017) no. 6, pp. 832-842.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1955, M. A. Krasnoselskii proved a fixed-point theorem for a single-valued map which is a completely continuous contraction (a hybrid theorem). Subsequently, his work was continued in various directions. In particular, it has stimulated the development of the theory of condensing maps (both single-valued and set-valued); the images of such maps are always compact. Various versions of hybrid theorems for set-valued maps with noncompact images have also been proved. The set-valued contraction in these versions was assumed to have closed images and the completely continuous perturbation, to be lower semicontinuous (in a certain sense). In this paper, a new hybrid fixed-point theorem is proved for any set-valued map which is the sum of a set-valued contraction and a compact set-valued map in the case where the compact set-valued perturbation is upper semicontinuous and pseudoacyclic. In conclusion, this hybrid theorem is used to study the solvability of operator inclusions for a new class of operators containing all surjective operators. The obtained result is applied to solve the solvability problem for a certain class of control systems determined by a singular differential equation with feedback.
Keywords: set-valued map, Hausdorff metric, contraction, surjective operator, operator inclusion.
@article{MZM_2017_101_6_a3,
     author = {B. D. Gel'man},
     title = {A {Hybrid} {Fixed-Point} {Theorem} for {Set-Valued} {Maps}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {832--842},
     publisher = {mathdoc},
     volume = {101},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a3/}
}
TY  - JOUR
AU  - B. D. Gel'man
TI  - A Hybrid Fixed-Point Theorem for Set-Valued Maps
JO  - Matematičeskie zametki
PY  - 2017
SP  - 832
EP  - 842
VL  - 101
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a3/
LA  - ru
ID  - MZM_2017_101_6_a3
ER  - 
%0 Journal Article
%A B. D. Gel'man
%T A Hybrid Fixed-Point Theorem for Set-Valued Maps
%J Matematičeskie zametki
%D 2017
%P 832-842
%V 101
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a3/
%G ru
%F MZM_2017_101_6_a3
B. D. Gel'man. A Hybrid Fixed-Point Theorem for Set-Valued Maps. Matematičeskie zametki, Tome 101 (2017) no. 6, pp. 832-842. http://geodesic.mathdoc.fr/item/MZM_2017_101_6_a3/

[1] M. A. Krasnoselskii, “Dva zamechaniya o metode posledovatelnykh priblizhenii”, UMN, 10:1 (63) (1955), 123–127 | MR | Zbl

[2] R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina, B. N. Sadovskii, Mery nekompaktnosti i uplotnyayuschie otobrazheniya, Nauka, Novosibirsk, 1986 | MR | Zbl

[3] M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Ser. Nonlinear Anal. Appl., 7, Walter de Gruyter, Berlin, 2001 | MR | Zbl

[4] J. Saint-Raymond, “Perturbations compactes des contractions multivoques”, Rend. Circ. Mat. Palermo (2), 39:3 (1990), 473–485 | DOI | MR | Zbl

[5] B. S. Dhage, “Multi-valued mappings and fixed points. I”, Nonlinear Funct. Anal. Appl., 10:3 (2005), 359–378 | MR | Zbl

[6] I. Basoc, T. Cardinali, “A hybrid nonlinear alternative theorem and some hybrid fixed point theorems for multimaps”, J. Fixed Point Theory Appl., 17:2 (2015), 413–424 | DOI | MR | Zbl

[7] B. D. Gelman, “Obobschennaya teorema o neyavnom otobrazhenii”, Funkts. analiz i ego pril., 35:3 (2001), 28–35 | DOI | MR | Zbl

[8] A. Favini, A. Yagi, Degenerate Differential Equations in Banach Spaces, Monogr. Textbooks Pure Appl. Math., 215, Marcel Dekker, New York, 1999 | MR | Zbl

[9] V. Obukhovskii, P. Zecca, “On boundari value problems for degenerate differential inclusions in Banach spaces”, Abstr. Appl. Anal., 13 (2003), 769–784 | DOI | MR | Zbl

[10] A. Baskakov, V. Obukhovskii, P. Zecca, “Multivalued linear operators and differential inclusions in Banach spaces”, Discuss. Math. Differ. Incl. Control Optim., 23 (2003), 53–74 | DOI | MR | Zbl

[11] B. D. Gelman, “O lokalnykh resheniyakh vyrozhdennykh differentsialnykh vklyuchenii”, Funkts. analiz i ego pril., 46:1 (2012), 79–83 | DOI | MR | Zbl

[12] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, URSS, M., 2005 | MR | Zbl

[13] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[14] B. D. Gelman, “Nepreryvnye approksimatsii mnogoznachnykh otobrazhenii i nepodvizhnye tochki”, Matem. zametki, 78:2 (2005), 212–222 | DOI | MR | Zbl

[15] E. Spener, Algebraicheskaya topologiya, Mir, M., 1971 | MR | Zbl

[16] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovskii, “Topologicheskie metody v teorii nepodvizhnykh tochek mnogoznachnykh otobrazhenii”, UMN, 35:1 (211) (1980), 59–126 | MR | Zbl

[17] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Math. Appl., 495, Kluwer Acad. Publ., Dordrecht, 1999 | MR | Zbl

[18] B. D. Gelman, “Ob odnom klasse operatornykh uravnenii”, Matem. zametki, 70:4 (2001), 544–552 | DOI | MR | Zbl

[19] B. D. Gelman, “Mnogoznachnye szhimayuschie otobrazheniya i ikh prilozheniya”, Vestn. VGU. Ser. fiz., matem., 2009, no. 1, 74–86