Adiabatic approximation for a Model of Cyclotron Motion
Matematičeskie zametki, Tome 101 (2017) no. 5, pp. 733-749

Voir la notice de l'article provenant de la source Math-Net.Ru

A specific problem is used to illustrate the limits of the approach resulting in an adiabatic approximation. The system of differential equations modeling the cyclotron motion of a charged relativistic particle in the field of an electromagnetic wave is considered. The problem of resonance capture of a particle with significantly varying energy is studied. The main result is the description of the capture area, i.e., the set of initial points on the phase plane from which the resonance trajectories issue. Such a description is obtained by the method of asymptotic approximation in a small parameter which corresponds to the rate of variation in the magnetic field. It is discovered that such an approximation is inapplicable in the case of small amplitudes of the electromagnetic wave.
Keywords: nonlinear oscillations, small parameter, asymptotics, resonance capture.
@article{MZM_2017_101_5_a8,
     author = {L. A. Kalyakin},
     title = {Adiabatic approximation for a {Model} of {Cyclotron} {Motion}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {733--749},
     publisher = {mathdoc},
     volume = {101},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a8/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Adiabatic approximation for a Model of Cyclotron Motion
JO  - Matematičeskie zametki
PY  - 2017
SP  - 733
EP  - 749
VL  - 101
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a8/
LA  - ru
ID  - MZM_2017_101_5_a8
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Adiabatic approximation for a Model of Cyclotron Motion
%J Matematičeskie zametki
%D 2017
%P 733-749
%V 101
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a8/
%G ru
%F MZM_2017_101_5_a8
L. A. Kalyakin. Adiabatic approximation for a Model of Cyclotron Motion. Matematičeskie zametki, Tome 101 (2017) no. 5, pp. 733-749. http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a8/