Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_101_5_a8, author = {L. A. Kalyakin}, title = {Adiabatic approximation for a {Model} of {Cyclotron} {Motion}}, journal = {Matemati\v{c}eskie zametki}, pages = {733--749}, publisher = {mathdoc}, volume = {101}, number = {5}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a8/} }
L. A. Kalyakin. Adiabatic approximation for a Model of Cyclotron Motion. Matematičeskie zametki, Tome 101 (2017) no. 5, pp. 733-749. http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a8/
[1] L. D. Landau, Teriya polya, Nauka, M., 1973
[2] C. S. Roberts, S. J. Buchsbaum, “Motion of a charged particle in a constant magnetic field and a transverse electromagnetic wave propagating along the field”, Phys. Rev. (2), 135 (1964), A381–A389 | DOI | MR
[3] V. P. Milantev, “Tsiklotronnyi avtorezonans (k 50-letiyu otkrytiya yavleniya)”, UFN, 183:8 (2013), 875–884 | DOI
[4] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, VINITI, M., 1985
[5] A. P. Itin, A. I. Neishtadt, A. A. Vasiliev, “Captures into resonance and scattering on resonance in dynamics of a charged relativistic particle in magnetic field and electrostatic wave”, Phys. D, 141:3-4 (2000), 281–296 | DOI | MR | Zbl
[6] L. A. Kalyakin, “Asimptoticheskii analiz modelei avtorezonansa”, UMN, 63:5 (383) (2008), 3–72 | DOI | MR | Zbl
[7] I. Bryuning, S. Yu. Dobrokhotov, M. A. Poteryakhin, “Ob usrednenii dlya gamiltonovykh sistem s odnoi bystroi fazoi i malymi amplitudami”, Matem. zametki, 70:5 (2001), 660–669 | DOI | MR | Zbl
[8] K. S. Golovanivsky, “Autoresonant acceleration of electrons at nonlinear ECR in a magnetic field which is smoothly growing in time”, Phys. Scripta, 22:2 (1980), 126–133 | DOI
[9] K. S. Golovanivsky, “The gyromagnetic autoresonance”, IEEE Transactions on Plasma Sci., 11:1 (1983), 28–35 | DOI
[10] A. I. Neishtadt, “Prokhozhdenie cherez separatrisu v rezonansnoi zadache s medlenno menyayuschimsya parametrom”, Prikl. matem. mekh., 39:4-6 (1975), 1331–1334 | MR
[11] O. M. Kiselev, S. G. Glebov, “An asymptotic solution slowly crossing the separatrix near a saddle-centre bifurcation point”, Nonlinearity, 16:1 (2003), 327–362 | DOI | MR | Zbl
[12] V. D. Azhotkin, V. M. Babich, “O primenenii metoda dvukhmasshtabnykh razlozhenii k odnochastotnoi zadache teorii nelineinykh kolebanii”, Prikl. matem. mekh., 49:3 (1985), 377–383 | Zbl
[13] J. A. Murdock, Perturbations. Theory and Methods, John Wiley Sons, New York, 1991 | MR | Zbl
[14] O. M. Kiselev, “Ostsillyatsii okolo separatrisy v uravnenii Dyuffinga”, Tr. IMM UrO RAN, 18, no. 2, 2012, 141–153
[15] A. I. Neishtadt, “O razdelenii dvizhenii v sistemakh s bystro vraschayuscheisya fazoi”, Prikl. matem. mekh., 48:2 (1984), 197–204 | MR
[16] L. A. Kalyakin, “Asimptoticheskii analiz modeli tsiklotronnogo giromagnitnogo avtorezonansa”, Vestn. Chelyabinskogo gos. un-ta. Fizika, 21 (2015), 68–74
[17] L. A. Kalyakin, “Asimptoticheskii analiz modeli giromagnitnogo avtorezonansa”, Zh. vychisl. matem. i matem. fiz., 57:2 (2017), 285–301