Uniform Asymptotics of the Boundary Values of the Solution in a~Linear Problem on the Run-Up of Waves on a~Shallow Beach
Matematičeskie zametki, Tome 101 (2017) no. 5, pp. 700-715.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Cauchy problem with spatially localized initial data for a two-dimensional wave equation with variable velocity in a domain $\Omega$. The velocity is assumed to degenerate on the boundary $\partial\Omega$ of the domain as the square root of the distance to $\partial\Omega$. In particular, this problems describes the run-up of tsunami waves on a shallow beach in the linear approximation. Further, the problem contains a natural small parameter (the typical source-to-basin size ratio) and hence admits analysis by asymptotic methods. It was shown in the paper “Characteristics with singularities and the boundary values of the asymptotic solution of the Cauchy problem for a degenerate wave equation” [1] that the boundary values of the asymptotic solution of this problem given by a modified Maslov canonical operator on the Lagrangian manifold formed by the nonstandard characteristics associated with the problem can be expressed via the canonical operator on a Lagrangian submanifold of the cotangent bundle of the boundary. However, the problem as to how this restriction is related to the boundary values of the exact solution of the problem remained open. In the present paper, we show that if the initial perturbation is specified by a function rapidly decaying at infinity, then the restriction of such an asymptotic solution to the boundary gives the asymptotics of the boundary values of the exact solution in the uniform norm. To this end, we in particular prove a trace theorem for nonstandard Sobolev type spaces with degeneration at the boundary.
Keywords: wave equation, nonstandard characteristics, run-up on a shallow beach, localized source, asymptotics, boundary values, trace theorem, higher-order transport equations.
@article{MZM_2017_101_5_a5,
     author = {S. Yu. Dobrokhotov and V. E. Nazaikinskii and A. A. Tolchennikov},
     title = {Uniform {Asymptotics} of the {Boundary} {Values} of the {Solution} in {a~Linear} {Problem} on the {Run-Up} of {Waves} on {a~Shallow} {Beach}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {700--715},
     publisher = {mathdoc},
     volume = {101},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a5/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
AU  - V. E. Nazaikinskii
AU  - A. A. Tolchennikov
TI  - Uniform Asymptotics of the Boundary Values of the Solution in a~Linear Problem on the Run-Up of Waves on a~Shallow Beach
JO  - Matematičeskie zametki
PY  - 2017
SP  - 700
EP  - 715
VL  - 101
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a5/
LA  - ru
ID  - MZM_2017_101_5_a5
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%A V. E. Nazaikinskii
%A A. A. Tolchennikov
%T Uniform Asymptotics of the Boundary Values of the Solution in a~Linear Problem on the Run-Up of Waves on a~Shallow Beach
%J Matematičeskie zametki
%D 2017
%P 700-715
%V 101
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a5/
%G ru
%F MZM_2017_101_5_a5
S. Yu. Dobrokhotov; V. E. Nazaikinskii; A. A. Tolchennikov. Uniform Asymptotics of the Boundary Values of the Solution in a~Linear Problem on the Run-Up of Waves on a~Shallow Beach. Matematičeskie zametki, Tome 101 (2017) no. 5, pp. 700-715. http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a5/

[1] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Kharakteristiki s osobennostyami i granichnye znacheniya asimptoticheskogo resheniya zadachi Koshi dlya vyrozhdayuschegosya volnovogo uravneniya”, Matem. zametki, 100:5 (2016), 710–731 | DOI | MR

[2] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR | Zbl

[3] M. Sh. Birman, M. Z. Solomyak, “Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve”, LGU, L., 1980 | MR | Zbl

[4] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirozzi, “Asymptotic solution of the one-dimensional wave equation with localized initial data and with degenerating velocity. I”, Russ. J. Math. Phys., 17:4 (2010), 434–447 | DOI | MR | Zbl

[5] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirotstsi, “Asimptoticheskie resheniya dvumernogo modelnogo volnovogo uravneniya s vyrozhdayuscheisya skorostyu i lokalizovannymi nachalnymi dannymi”, Algebra i analiz, 22:6 (2010), 67–90 | MR | Zbl

[6] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirozzi, “Two-dimensional wave equation with degeneration on the curvilinear boundary of the domain and asymptotic solutions with localized initial data”, Russ. J. Math. Phys, 20:4 (2013), 389–401 | DOI | MR | Zbl

[7] J. J. Stoker, Water Waves. The Mathematical Theory with Applications, John Wiley and Sons, New York, 1958 | MR | Zbl

[8] E. N. Pelinovskii, Gidrodinamika voln tsunami, IPF RAN, Nizhnii Novgorod, 1996

[9] E. N. Pelinovsky, R. Kh. Mazova, “Exact analytical solutions of nonlinear problems of tsunami wave run-up on slopes with different profiles”, Natural Hazards, 6:3 (1992), 227–249 | DOI

[10] S. Yu. Dobrokhotov, D. S. Minenkov, V. E. Nazaikinskii, B. Tirozzi, “Simple exact and asymptotic solutions of the 1D run-up problem over a slowly varying (quasiplanar) bottom”, Theory and Applications in Mathematical Physics, World Sci., Singapore, 2015, 29–47 | DOI

[11] V. E. Nazaikinskii, “Kanonicheskii operator Maslova na lagranzhevykh mnogoobraziyakh v fazovom prostranstve, sootvetstvuyuschem vyrozhdayuschemusya na granitse volnovomu uravneniyu”, Matem. zametki, 96:2 (2014), 261–276 | DOI | Zbl

[12] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965

[13] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[14] S. Yu. Dobrokhotov, G. N. Makrakis, V. E. Nazaikinskii, T. Ya. Tudorovskii, “Novye formuly dlya kanonicheskogo operatora Maslova v okrestnosti fokalnykh tochek i kaustik v dvumernykh kvaziklassicheskikh asimptotikakh”, TMF, 177:3 (2013), 355–386 | DOI | Zbl

[15] V. E. Nazaikinskii, “O predstavleniyakh lokalizovannykh funktsii v $\mathbb R^2$ kanonicheskim operatorom Maslova”, Matem. zametki, 96:1 (2014), 88–100 | DOI | Zbl