Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_101_5_a5, author = {S. Yu. Dobrokhotov and V. E. Nazaikinskii and A. A. Tolchennikov}, title = {Uniform {Asymptotics} of the {Boundary} {Values} of the {Solution} in {a~Linear} {Problem} on the {Run-Up} of {Waves} on {a~Shallow} {Beach}}, journal = {Matemati\v{c}eskie zametki}, pages = {700--715}, publisher = {mathdoc}, volume = {101}, number = {5}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a5/} }
TY - JOUR AU - S. Yu. Dobrokhotov AU - V. E. Nazaikinskii AU - A. A. Tolchennikov TI - Uniform Asymptotics of the Boundary Values of the Solution in a~Linear Problem on the Run-Up of Waves on a~Shallow Beach JO - Matematičeskie zametki PY - 2017 SP - 700 EP - 715 VL - 101 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a5/ LA - ru ID - MZM_2017_101_5_a5 ER -
%0 Journal Article %A S. Yu. Dobrokhotov %A V. E. Nazaikinskii %A A. A. Tolchennikov %T Uniform Asymptotics of the Boundary Values of the Solution in a~Linear Problem on the Run-Up of Waves on a~Shallow Beach %J Matematičeskie zametki %D 2017 %P 700-715 %V 101 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a5/ %G ru %F MZM_2017_101_5_a5
S. Yu. Dobrokhotov; V. E. Nazaikinskii; A. A. Tolchennikov. Uniform Asymptotics of the Boundary Values of the Solution in a~Linear Problem on the Run-Up of Waves on a~Shallow Beach. Matematičeskie zametki, Tome 101 (2017) no. 5, pp. 700-715. http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a5/
[1] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Kharakteristiki s osobennostyami i granichnye znacheniya asimptoticheskogo resheniya zadachi Koshi dlya vyrozhdayuschegosya volnovogo uravneniya”, Matem. zametki, 100:5 (2016), 710–731 | DOI | MR
[2] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR | Zbl
[3] M. Sh. Birman, M. Z. Solomyak, “Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve”, LGU, L., 1980 | MR | Zbl
[4] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirozzi, “Asymptotic solution of the one-dimensional wave equation with localized initial data and with degenerating velocity. I”, Russ. J. Math. Phys., 17:4 (2010), 434–447 | DOI | MR | Zbl
[5] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirotstsi, “Asimptoticheskie resheniya dvumernogo modelnogo volnovogo uravneniya s vyrozhdayuscheisya skorostyu i lokalizovannymi nachalnymi dannymi”, Algebra i analiz, 22:6 (2010), 67–90 | MR | Zbl
[6] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirozzi, “Two-dimensional wave equation with degeneration on the curvilinear boundary of the domain and asymptotic solutions with localized initial data”, Russ. J. Math. Phys, 20:4 (2013), 389–401 | DOI | MR | Zbl
[7] J. J. Stoker, Water Waves. The Mathematical Theory with Applications, John Wiley and Sons, New York, 1958 | MR | Zbl
[8] E. N. Pelinovskii, Gidrodinamika voln tsunami, IPF RAN, Nizhnii Novgorod, 1996
[9] E. N. Pelinovsky, R. Kh. Mazova, “Exact analytical solutions of nonlinear problems of tsunami wave run-up on slopes with different profiles”, Natural Hazards, 6:3 (1992), 227–249 | DOI
[10] S. Yu. Dobrokhotov, D. S. Minenkov, V. E. Nazaikinskii, B. Tirozzi, “Simple exact and asymptotic solutions of the 1D run-up problem over a slowly varying (quasiplanar) bottom”, Theory and Applications in Mathematical Physics, World Sci., Singapore, 2015, 29–47 | DOI
[11] V. E. Nazaikinskii, “Kanonicheskii operator Maslova na lagranzhevykh mnogoobraziyakh v fazovom prostranstve, sootvetstvuyuschem vyrozhdayuschemusya na granitse volnovomu uravneniyu”, Matem. zametki, 96:2 (2014), 261–276 | DOI | Zbl
[12] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965
[13] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl
[14] S. Yu. Dobrokhotov, G. N. Makrakis, V. E. Nazaikinskii, T. Ya. Tudorovskii, “Novye formuly dlya kanonicheskogo operatora Maslova v okrestnosti fokalnykh tochek i kaustik v dvumernykh kvaziklassicheskikh asimptotikakh”, TMF, 177:3 (2013), 355–386 | DOI | Zbl
[15] V. E. Nazaikinskii, “O predstavleniyakh lokalizovannykh funktsii v $\mathbb R^2$ kanonicheskim operatorom Maslova”, Matem. zametki, 96:1 (2014), 88–100 | DOI | Zbl