Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_101_5_a2, author = {V. A. Vatutin}, title = {A {Conditional} {Functional} {Limit} {Theorem} for {Decomposable} {Branching} {Processes} with {Two} {Types} of {Particles}}, journal = {Matemati\v{c}eskie zametki}, pages = {669--683}, publisher = {mathdoc}, volume = {101}, number = {5}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a2/} }
TY - JOUR AU - V. A. Vatutin TI - A Conditional Functional Limit Theorem for Decomposable Branching Processes with Two Types of Particles JO - Matematičeskie zametki PY - 2017 SP - 669 EP - 683 VL - 101 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a2/ LA - ru ID - MZM_2017_101_5_a2 ER -
V. A. Vatutin. A Conditional Functional Limit Theorem for Decomposable Branching Processes with Two Types of Particles. Matematičeskie zametki, Tome 101 (2017) no. 5, pp. 669-683. http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a2/
[1] R. S. Slack, “A branching process with mean one and possibly infinite variance”, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 9:2 (1968), 139–145 | DOI | MR | Zbl
[2] E. Seneta, Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl
[3] A. M. Zubkov, “Predelnoe povedenie razlozhimykh kriticheskikh vetvyaschikhsya protsessov s dvumya tipami chastits”, Teoriya veroyatn. i ee primen., 27:2 (1982), 228–238 | MR | Zbl
[4] V. A. Vatutin, S. M. Sagitov, “Razlozhimyi kriticheskii vetvyaschiisya protsess s dvumya tipami chastits”, Veroyatnostnye zadachi diskretnoi matematiki, Tr. MIAN SSSR, 177, 1986, 3–20 | MR | Zbl
[5] C. Smadi, V. A. Vatutin, “Reduced two-type decomposable critical branching processes with possibly infinite variance”, Markov Process. Related Fields, 22:2 (2016), 311–358 | MR
[6] B. A. Sevastyanov, Vetvyaschiesya protsessy, Nauka, M., 1971 | MR | Zbl
[7] K. B. Athreya, P. E. Ney, Branching Processes, Grundlehren Math. Wiss., 196, Springer-Verlag, Berlin, 1972 | MR | Zbl
[8] V. A. Vatutin, “Struktura razlozhimykh redutsirovannykh vetvyaschikhsya protsessov. I. Konechnomernye raspredeleniya”, Teoriya veroyatn. i ee primen., 59:4 (2014), 667–692 | DOI
[9] V. A. Vatutin, “Struktura razlozhimykh redutsirovannykh vetvyaschikhsya protsessov. II. Funktsionalnye predelnye teoremy”, Teoriya veroyatn. i ee primen., 60:1 (2015), 25–44 | DOI | MR
[10] V. A. Vatutin, E. E. Dyakonova, “Razlozhimye vetvyaschiesya protsessy s fiksirovannym momentom vyrozhdeniya”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Tr. MIAN, 290, MAIK, M., 2015, 114–135 | DOI
[11] V. A. Vatutin, E. E. Dyakonova, “O vyrozhdenii razlozhimykh vetvyaschikhsya protsessov”, Diskret. matem., 27:4 (2015), 26–37 | DOI | MR | Zbl
[12] M. Drmota, V. Vatutin, “Limiting distributions in branching processes with two types of particles”, Classical and Modern Branching Processes, IMA Vol. Math. Appl., 84, Springer, New York, 1987, 89–110 | DOI | MR | Zbl
[13] V. I. Afanasev, “Funktsionalnye predelnye teoremy dlya razlozhimogo vetvyaschegosya protsessa s dvumya tipami chastits”, Diskret. matem., 27:2 (2015), 22–44 | DOI | MR
[14] V. I. Afanasev, “O razlozhimom vetvyaschemsya protsesse s dvumya tipami chastits”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki. II, Tr. MIAN, 294, MAIK, M., 2016, 7–19 | DOI
[15] A. Grimvall, “On the convergence of sequences of branching processes”, Ann. Probab., 2:6 (1974), 1027–1045 | DOI | MR | Zbl
[16] J. Lamperti, “Limiting distributions for branching processes”, 1967 Proc. Fifth Berkeley Sympos. Math. Statist. and Probability Vol. II. Contributions to Probability Theory. Part 2, Univ. California Press, Berkeley, CA, 1967, 225–241 | MR | Zbl
[17] P. Billingsley, Convergence of Probability Measures, John Wiley Sons, New York, 1999 | MR | Zbl
[18] P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR | Zbl
[19] Zh. Zhakod, A. N. Shiryaev, Predelnye teoremy dlya sluchainykh protsessov, T. 1, Fizmatlit, M., 1994 | MR | Zbl
[20] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1984 | MR | Zbl
[21] T. Duquesne, “A limit theorem for the contour process of conditioned Galton–Watson trees”, Ann. Probab., 31:2 (2003), 996–1027 | MR | Zbl
[22] I. Kortchemski, “A simple proof of Duquesne's theorem on contour processes of conditioned Galton–Watson trees”, Séminaire de Probabilités XLV, Lecture Notes in Math., 2078, Springer-Verlag, Berlin, 2013, 537–558 | DOI | MR | Zbl
[23] T. Duquesne, J.-F. Le Gall, “Random Trees, Lévy Processes and Spatial Branching Processes”, Astérisque, 281 (2002), Soc. Math. France, Paris | MR | Zbl
[24] V. F. Kolchin, Sluchainye otobrazheniya, Teoriya veroyatnostei i matematicheskaya statistika, Nauka, M., 1984 | MR | Zbl