Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_101_5_a11, author = {S. P. Suetin}, title = {An {Analog} of {P\'olya's} {Theorem} for {Multivalued} {Analytic} {Functions} with {Finitely} {Many} {Branch} {Points}}, journal = {Matemati\v{c}eskie zametki}, pages = {779--791}, publisher = {mathdoc}, volume = {101}, number = {5}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a11/} }
TY - JOUR AU - S. P. Suetin TI - An Analog of P\'olya's Theorem for Multivalued Analytic Functions with Finitely Many Branch Points JO - Matematičeskie zametki PY - 2017 SP - 779 EP - 791 VL - 101 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a11/ LA - ru ID - MZM_2017_101_5_a11 ER -
S. P. Suetin. An Analog of P\'olya's Theorem for Multivalued Analytic Functions with Finitely Many Branch Points. Matematičeskie zametki, Tome 101 (2017) no. 5, pp. 779-791. http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a11/
[1] H. R. Stahl, Sets of Minimal Capacity and Extremal Domains, arXiv: 1205.3811
[2] S. P. Suetin, “Raspredelenie nulei polinomov Ermita–Pade i lokalizatsiya tochek vetvleniya mnogoznachnykh analiticheskikh funktsii”, UMN, 71:5 (431) (2016), 183–184 | DOI | MR
[3] G. Polya, “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhangende Gebiete. III”, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 1929 (1929), 55–62 | Zbl
[4] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR | Zbl
[5] V. I. Buslaev, “Analog teoremy Polia dlya kusochno golomorfnykh funktsii”, Matem. sb., 206:12 (2015), 55–69 | DOI | MR
[6] A. I. Aptekarev, “Asimptotika approksimatsii Ermita–Pade dlya pary funktsii s tochkami vetvleniya”, Dokl. AN, 422:4 (2008), 443–445 | MR | Zbl
[7] V. I. Buslaev, “Emkost kompakta v pole logarifmicheskogo potentsiala”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Tr. MIAN, 290, MAIK, M., 2015, 254–271 | DOI | Zbl
[8] V. I. Buslaev, “Analog teoremy Gonchara dlya $m$-tochechnogo varianta gipotezy Leitona”, Funktsionalnye prostranstva, teoriya priblizhenii, smezhnye razdely matematicheskogo analiza, Tr. MIAN, 293, MAIK, M., 2016, 133–145 | DOI | Zbl
[9] H. Stahl, “The convergence of Padé approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl
[10] E. A. Rakhmanov, “Orthogonal polynomials and $S$-curves”, Recent Advances in Orthogonal Polynomials, Special Functions and Their Applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239 | DOI | MR | Zbl
[11] S. P. Suetin, “Raspredelenie nulei polinomov Pade i analiticheskoe prodolzhenie”, UMN, 70:5 (425) (2015), 121–174 | DOI | MR | Zbl
[12] A. I. Aptekarev, M. L. Yattselev, “Padé approximants for functions with branch points – strong asymptotics of Nuttall–Stahl polynomials”, Acta Math., 215:2 (2015), 217–280 | DOI | MR | Zbl
[13] J. Nuttall, “Asymptotics of generalized Jacobi polynomials”, Constr. Approx., 2:1 (1986), 59–77 | DOI | MR | Zbl
[14] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Heine, Hilbert, Padé, Riemann, and Stieltjes: John Nuttall's work 25 years later”, Recent Advances in Orthogonal Polynomials, Special Functions, and Their Applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 165–193 | DOI | MR | Zbl
[15] M. A. Lapik, “O semeistvakh vektornykh mer, ravnovesnykh vo vneshnem pole”, Matem. sb., 206:2 (2015), 41–56 | DOI | MR | Zbl
[16] V. I. Buslaev, S. P. Suetin, “O zadachakh ravnovesiya, svyazannykh s raspredeleniem nulei polinomov Ermita–Pade”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Tr. MIAN, 290, MAIK, M., 2015, 272–279 | DOI
[17] A. V. Komlov, N. G. Kruzhilin, R. V. Palvelev, S. P. Suetin, “O skhodimosti kvadratichnykh approksimatsii Shafera”, UMN, 71:2 (428) (2016), 205–206 | DOI | MR | Zbl
[18] N. R. Ikonomov, R. K. Kovacheva, S. P. Suetin, Some Numerical Results on the Behavior of Zeros of the Hermite–Padé Polynomials, 2015, arXiv: 1501.07090