An Analog of P\'olya's Theorem for Multivalued Analytic Functions with Finitely Many Branch Points
Matematičeskie zametki, Tome 101 (2017) no. 5, pp. 779-791.

Voir la notice de l'article provenant de la source Math-Net.Ru

An analog of Pólya's theorem on the estimate of the transfinite diameter for a class of multivalued analytic functions with finitely many branch points and of the corresponding class of admissible compact sets located on the associated (with this function) two-sheeted Stahl–Riemann surface is obtained.
Keywords: analytic continuation, transfinite diameter, Pólya's theorem, Stahl–Riemann surface.
Mots-clés : Padé polynomial
@article{MZM_2017_101_5_a11,
     author = {S. P. Suetin},
     title = {An {Analog} of {P\'olya's} {Theorem} for {Multivalued} {Analytic} {Functions} with {Finitely} {Many} {Branch} {Points}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {779--791},
     publisher = {mathdoc},
     volume = {101},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a11/}
}
TY  - JOUR
AU  - S. P. Suetin
TI  - An Analog of P\'olya's Theorem for Multivalued Analytic Functions with Finitely Many Branch Points
JO  - Matematičeskie zametki
PY  - 2017
SP  - 779
EP  - 791
VL  - 101
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a11/
LA  - ru
ID  - MZM_2017_101_5_a11
ER  - 
%0 Journal Article
%A S. P. Suetin
%T An Analog of P\'olya's Theorem for Multivalued Analytic Functions with Finitely Many Branch Points
%J Matematičeskie zametki
%D 2017
%P 779-791
%V 101
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a11/
%G ru
%F MZM_2017_101_5_a11
S. P. Suetin. An Analog of P\'olya's Theorem for Multivalued Analytic Functions with Finitely Many Branch Points. Matematičeskie zametki, Tome 101 (2017) no. 5, pp. 779-791. http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a11/

[1] H. R. Stahl, Sets of Minimal Capacity and Extremal Domains, arXiv: 1205.3811

[2] S. P. Suetin, “Raspredelenie nulei polinomov Ermita–Pade i lokalizatsiya tochek vetvleniya mnogoznachnykh analiticheskikh funktsii”, UMN, 71:5 (431) (2016), 183–184 | DOI | MR

[3] G. Polya, “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhangende Gebiete. III”, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 1929 (1929), 55–62 | Zbl

[4] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR | Zbl

[5] V. I. Buslaev, “Analog teoremy Polia dlya kusochno golomorfnykh funktsii”, Matem. sb., 206:12 (2015), 55–69 | DOI | MR

[6] A. I. Aptekarev, “Asimptotika approksimatsii Ermita–Pade dlya pary funktsii s tochkami vetvleniya”, Dokl. AN, 422:4 (2008), 443–445 | MR | Zbl

[7] V. I. Buslaev, “Emkost kompakta v pole logarifmicheskogo potentsiala”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Tr. MIAN, 290, MAIK, M., 2015, 254–271 | DOI | Zbl

[8] V. I. Buslaev, “Analog teoremy Gonchara dlya $m$-tochechnogo varianta gipotezy Leitona”, Funktsionalnye prostranstva, teoriya priblizhenii, smezhnye razdely matematicheskogo analiza, Tr. MIAN, 293, MAIK, M., 2016, 133–145 | DOI | Zbl

[9] H. Stahl, “The convergence of Padé approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl

[10] E. A. Rakhmanov, “Orthogonal polynomials and $S$-curves”, Recent Advances in Orthogonal Polynomials, Special Functions and Their Applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239 | DOI | MR | Zbl

[11] S. P. Suetin, “Raspredelenie nulei polinomov Pade i analiticheskoe prodolzhenie”, UMN, 70:5 (425) (2015), 121–174 | DOI | MR | Zbl

[12] A. I. Aptekarev, M. L. Yattselev, “Padé approximants for functions with branch points – strong asymptotics of Nuttall–Stahl polynomials”, Acta Math., 215:2 (2015), 217–280 | DOI | MR | Zbl

[13] J. Nuttall, “Asymptotics of generalized Jacobi polynomials”, Constr. Approx., 2:1 (1986), 59–77 | DOI | MR | Zbl

[14] A. Martínez-Finkelshtein, E. A. Rakhmanov, S. P. Suetin, “Heine, Hilbert, Padé, Riemann, and Stieltjes: John Nuttall's work 25 years later”, Recent Advances in Orthogonal Polynomials, Special Functions, and Their Applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 165–193 | DOI | MR | Zbl

[15] M. A. Lapik, “O semeistvakh vektornykh mer, ravnovesnykh vo vneshnem pole”, Matem. sb., 206:2 (2015), 41–56 | DOI | MR | Zbl

[16] V. I. Buslaev, S. P. Suetin, “O zadachakh ravnovesiya, svyazannykh s raspredeleniem nulei polinomov Ermita–Pade”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Tr. MIAN, 290, MAIK, M., 2015, 272–279 | DOI

[17] A. V. Komlov, N. G. Kruzhilin, R. V. Palvelev, S. P. Suetin, “O skhodimosti kvadratichnykh approksimatsii Shafera”, UMN, 71:2 (428) (2016), 205–206 | DOI | MR | Zbl

[18] N. R. Ikonomov, R. K. Kovacheva, S. P. Suetin, Some Numerical Results on the Behavior of Zeros of the Hermite–Padé Polynomials, 2015, arXiv: 1501.07090