Finding the Coefficients in the New Representation of the Solution of the Riemann--Hilbert Problem Using the Lauricella Function
Matematičeskie zametki, Tome 101 (2017) no. 5, pp. 647-668.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solution of the Riemann–Hilbert problem for an analytic function in a canonical domain for the case in which the data of the problem is piecewise constant can be expressed as a Christoffel–Schwartz integral. In this paper, we present an explicit expression for the parameters of this integral obtained by using a Jacobi-type formula for the Lauricella generalized hypergeometric function $F_D^{(N)}$. The results can be applied to a number of problems, including those in plasma physics and the mechanics of deformed solids.
Keywords: Riemann–Hilbert problem with piecewise constant data, Lauricella function $F_D^{(N)}$, Christoffel–Schwartz integral.
Mots-clés : Jacobi-type formula
@article{MZM_2017_101_5_a1,
     author = {S. I. Bezrodnykh},
     title = {Finding the {Coefficients} in the {New} {Representation} of the {Solution} of the {Riemann--Hilbert} {Problem} {Using} the {Lauricella} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {647--668},
     publisher = {mathdoc},
     volume = {101},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a1/}
}
TY  - JOUR
AU  - S. I. Bezrodnykh
TI  - Finding the Coefficients in the New Representation of the Solution of the Riemann--Hilbert Problem Using the Lauricella Function
JO  - Matematičeskie zametki
PY  - 2017
SP  - 647
EP  - 668
VL  - 101
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a1/
LA  - ru
ID  - MZM_2017_101_5_a1
ER  - 
%0 Journal Article
%A S. I. Bezrodnykh
%T Finding the Coefficients in the New Representation of the Solution of the Riemann--Hilbert Problem Using the Lauricella Function
%J Matematičeskie zametki
%D 2017
%P 647-668
%V 101
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a1/
%G ru
%F MZM_2017_101_5_a1
S. I. Bezrodnykh. Finding the Coefficients in the New Representation of the Solution of the Riemann--Hilbert Problem Using the Lauricella Function. Matematičeskie zametki, Tome 101 (2017) no. 5, pp. 647-668. http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a1/

[1] B. Riemann, Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse, Inauguraldissertation, Göttingen, 1851; Б. Риман, “Основы общей теории функций одной комплексной переменной”, Сочинения, М., 1948, 49–87

[2] D. Hilbert, Über eine Anwendung der Integralgleichungen auf ein Problem der Functionentheorie, Verhandl. des III Internat. Math. Kongr., Heidelberg, 1904

[3] D. Hilbert, Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen, B. G. Teubner, Leipzig, 1912 | MR | Zbl

[4] F. Noether, “Über eine Klasse singulärer Integralgleichungen”, Math. Ann., 82:1-2 (1921), 42–63 | MR

[5] T. Carleman, “Sur la résolution de certaines équations intégrales”, Ark. Mat. Astron. Fys., 16:26 (1922), 1–19 | Zbl

[6] N. Muskhelishvili, Applications des intégrales analogues à celles de Cauchy à quelques pronlèmes de la physique mathématique, Édition de l'Université de Tiflis, Tiflis, 1922 | Zbl

[7] É. Picard, Leçons sur quelques types simples d'équations aux dérivées partielles avec des applications á la physique mathématique, Gauthier-Villars, Paris, 1927 | MR | Zbl

[8] F. D. Gakhov, “Lineinye kraevye zadachi teorii funktsii kompleksnoi peremennoi”, Izv. Kazanskogo fiz.-matem. ob-va, 10:3 (1938), 39–79 | Zbl

[9] N. I. Muskhelishvili, Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR | Zbl

[10] F. D. Gakhov, Kraevye zadachi, Nauka, M., 1977 | MR | Zbl

[11] W. Wendland, Elliptic Systems in the Plane, Monogr. Stud. in Math., 3, Pitman, London, 1979 | MR | Zbl

[12] F. Frank, R. Mizes, Differentsialnye i integralnye uravneniya matematicheskoi fiziki, ONTI, M.–L., 1937

[13] L. N. Trefethen, R. J. Williams, “Conformal mapping solution of Laplace's equation on a polygon with oblique derivative boundary condition”, J. Comput. Appl. Math., 14:1-2 (1986), 227–249 | DOI | MR | Zbl

[14] S. A. Markovskii, B. V. Somov, “Model magnitnogo peresoedineniya v tokovom sloe s udarnymi volnami”, Fizika solnechnoi plazmy, Nauka, M., 1989, 456–472

[15] P. A. Krutitskii, “O stekanii elektricheskogo toka s pryamolineinykh elektrodov v zamagnichennoi poluprovodnikovoi plenke”, Zh. vychisl. matem. i matem. fiz., 30:11 (1990), 1689–1701 | MR

[16] A. I. Aptekarev, V. Van Assshe, S. P. Suetin, “Skalyarnaya zadacha Rimana i silnaya asimptotika approksimatsii Pade i ortogonalnykh mnogochlenov”, Preprinty IPM im. M. V. Keldysha, 2001, 026

[17] A. Aptekarev, A. Cachafeiro, F. Marcellán, “A scalar Riemann boundary value problem approach to orthogonal polynomials on the circle”, J. Approx. Theory, 141:2 (2006), 174–181 | DOI | MR | Zbl

[18] A. S. Demidov, “Funktsionalno-geometricheskii metod resheniya zadach so svobodnoi granitsei dlya garmonicheskikh funktsii”, UMN, 65:1 (391) (2010), 3–96 | DOI | MR | Zbl

[19] S. I. Bezrodnykh, V. I. Vlasov, “Singulyarnaya zadacha Rimana–Gilberta v slozhnykh oblastyakh”, Zh. vychisl. matem. i matem. fiz., 54:12 (2014), 1904–1953 | DOI | MR | Zbl

[20] A. P. Soldatov, Kraevye zadachi teorii funktsii v oblastyakh s kusochno-gladkoi granitsei, Izd-vo Tbilisskogo un-ta, Tbilisi, 1991 | MR | Zbl

[21] A. P. Soldatov, “Vesovye klassy Khardi analiticheskikh funktsii”, Differents. uravneniya, 38:6 (2002), 809–817 | MR | Zbl

[22] S. B. Klimentov, Granichnye svoistva obobschennykh analiticheskikh funktsii, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2014

[23] S. I. Bezrodnykh, V. I. Vlasov, B. V. Somov, “Obobschennye analiticheskie modeli tokovogo sloya Syrovatskogo”, Pisma v Astronomicheskii zhurnal, 37:2 (2011), 133–150

[24] B. V. Somov, Plasma Astrophysics. Part II. Reconnection and Flares, Springer, New York, 2013

[25] E. Treffz, “Über die Wirkung einer Abrundung auf die Torsionsspannungen in der inneren Ecke eines Winkeleisens”, Z. Angew. Math. Mech., 2:4 (1922), 263–267 | DOI | Zbl

[26] S. I. Bezrodnykh, V. I. Vlasov, “On a new representation for the solution of the Riemann–Hilbert problem”, Math. Notes, 99:6 (2016), 932–937 | DOI | MR | Zbl

[27] S. I. Bezrodnykh, V. I. Vlasov, “Singulyarnaya zadacha Rimana–Gilberta v slozhnykh oblastyakh”, Spectral and Evolution Problems, 16 (2006), 51–62

[28] S. I. Bezrodnykh, V. I. Vlasov, “Zadacha Rimana–Gilberta v slozhnoi oblasti dlya modeli magnitnogo peresoedineniya v plazme”, Zh. vychisl. matem. i matem. fiz., 42:3 (2002), 277–312 | MR | Zbl

[29] S. I. Bezrodnykh, “Sootnoshenie tipa Yakobi dlya obobschennoi gipergeometricheskoi funktsii”, III mezhdunarodnaya konferentsiya “Matematicheskie idei P. L. Chebysheva i ikh prilozhenie k sovremennym problemam estestvoznaniya” (Obninsk, 14–18 maya 2006 g.), Tezisy dokladov, 2006, 18–19 | MR

[30] S. I. Bezrodnykh, “Formuly analiticheskogo prodolzheniya i sootnosheniya tipa Yakobi dlya funktsii Laurichelly”, Dokl. AN, 467:1 (2016), 7–12 | MR | Zbl

[31] S. I. Bezrodnykh, “Differentsialnye sootnosheniya tipa Yakobi dlya funktsii Laurichelly $F_D^{(N)}$”, Matem. zametki, 99:6 (2016), 832–847 | DOI | MR | Zbl

[32] G. Lauricella, “Sulle funzioni ipergeometriche a piu variabili”, Rend. Circ. Math. Palermo, 7, Suppl. 1 (1893), 111–158 | DOI

[33] H. Exton, Multiple Hypergeometric Functions and Applications, John Wiley Sons, New York, 1976 | MR | Zbl

[34] K. Aomoto, M. Kita, Theory of Hypergeometric Functions, Springer-Verlag, Tokyo, 2011 | MR | Zbl

[35] P. P. Kufarev, “K voprosu o kruchenii i izgibe sterzhnei poligonalnogo secheniya”, Prikl. matem. mekh., 1:1 (1937), 43–76 | Zbl

[36] V. Koppenfels, F. Shtalman, Praktika konformnykh otobrazhenii, IL, M., 1963 | Zbl

[37] V. I. Vlasov, S. A. Markovskii, B. V. Somov, Ob analiticheskoi modeli magnitnogo peresoedineniya v plazme, Dep. v VINITI No 769-V89, M., 1989

[38] V. I. Vlasov, Kraevye zadachi v oblastyakh s krivolineinoi granitsei, Izd-vo VTs AN SSSR, M., 1987

[39] V. I. Vlasov, S. L. Skorokhodov, “O razvitii metoda Trefftsa”, Dokl. AN, 337:6 (1994), 713–717 | MR | Zbl

[40] W. C. Hassenpflug, “Torsion of uniform bars with polygon cross-section”, Comput. Math. Appl., 46:2-3 (2003), 313–392 | DOI | MR | Zbl

[41] S. I. Bezrodnykh, B. V. Somov, “Analysis of magnetic field and magnetosphere of neutron star under effect of a shock wave”, Adv. in Space Res., 56:5 (2015), 964–969 | DOI

[42] S. I. Bezrodnykh, Singulyarnaya zadacha Rimana–Gilberta i ee prilozhenie, Dis. $\dots$ kand. fiz-matem. nauk, VTs RAN, M., 2006

[43] C. G. J. Jacobi, “Untersuchungen über die Differentialgleichungen der hypergeometrischen Reihe”, J. Reine Angew. Math., 56 (1859), 149–165 | DOI | MR | Zbl

[44] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1973 | MR | Zbl