Mots-clés : Jacobi-type formula
@article{MZM_2017_101_5_a1,
author = {S. I. Bezrodnykh},
title = {Finding the {Coefficients} in the {New} {Representation} of the {Solution} of the {Riemann{\textendash}Hilbert} {Problem} {Using} the {Lauricella} {Function}},
journal = {Matemati\v{c}eskie zametki},
pages = {647--668},
year = {2017},
volume = {101},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a1/}
}
TY - JOUR AU - S. I. Bezrodnykh TI - Finding the Coefficients in the New Representation of the Solution of the Riemann–Hilbert Problem Using the Lauricella Function JO - Matematičeskie zametki PY - 2017 SP - 647 EP - 668 VL - 101 IS - 5 UR - http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a1/ LA - ru ID - MZM_2017_101_5_a1 ER -
%0 Journal Article %A S. I. Bezrodnykh %T Finding the Coefficients in the New Representation of the Solution of the Riemann–Hilbert Problem Using the Lauricella Function %J Matematičeskie zametki %D 2017 %P 647-668 %V 101 %N 5 %U http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a1/ %G ru %F MZM_2017_101_5_a1
S. I. Bezrodnykh. Finding the Coefficients in the New Representation of the Solution of the Riemann–Hilbert Problem Using the Lauricella Function. Matematičeskie zametki, Tome 101 (2017) no. 5, pp. 647-668. http://geodesic.mathdoc.fr/item/MZM_2017_101_5_a1/
[1] B. Riemann, Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse, Inauguraldissertation, Göttingen, 1851; Б. Риман, “Основы общей теории функций одной комплексной переменной”, Сочинения, М., 1948, 49–87
[2] D. Hilbert, Über eine Anwendung der Integralgleichungen auf ein Problem der Functionentheorie, Verhandl. des III Internat. Math. Kongr., Heidelberg, 1904
[3] D. Hilbert, Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen, B. G. Teubner, Leipzig, 1912 | MR | Zbl
[4] F. Noether, “Über eine Klasse singulärer Integralgleichungen”, Math. Ann., 82:1-2 (1921), 42–63 | MR
[5] T. Carleman, “Sur la résolution de certaines équations intégrales”, Ark. Mat. Astron. Fys., 16:26 (1922), 1–19 | Zbl
[6] N. Muskhelishvili, Applications des intégrales analogues à celles de Cauchy à quelques pronlèmes de la physique mathématique, Édition de l'Université de Tiflis, Tiflis, 1922 | Zbl
[7] É. Picard, Leçons sur quelques types simples d'équations aux dérivées partielles avec des applications á la physique mathématique, Gauthier-Villars, Paris, 1927 | MR | Zbl
[8] F. D. Gakhov, “Lineinye kraevye zadachi teorii funktsii kompleksnoi peremennoi”, Izv. Kazanskogo fiz.-matem. ob-va, 10:3 (1938), 39–79 | Zbl
[9] N. I. Muskhelishvili, Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR | Zbl
[10] F. D. Gakhov, Kraevye zadachi, Nauka, M., 1977 | MR | Zbl
[11] W. Wendland, Elliptic Systems in the Plane, Monogr. Stud. in Math., 3, Pitman, London, 1979 | MR | Zbl
[12] F. Frank, R. Mizes, Differentsialnye i integralnye uravneniya matematicheskoi fiziki, ONTI, M.–L., 1937
[13] L. N. Trefethen, R. J. Williams, “Conformal mapping solution of Laplace's equation on a polygon with oblique derivative boundary condition”, J. Comput. Appl. Math., 14:1-2 (1986), 227–249 | DOI | MR | Zbl
[14] S. A. Markovskii, B. V. Somov, “Model magnitnogo peresoedineniya v tokovom sloe s udarnymi volnami”, Fizika solnechnoi plazmy, Nauka, M., 1989, 456–472
[15] P. A. Krutitskii, “O stekanii elektricheskogo toka s pryamolineinykh elektrodov v zamagnichennoi poluprovodnikovoi plenke”, Zh. vychisl. matem. i matem. fiz., 30:11 (1990), 1689–1701 | MR
[16] A. I. Aptekarev, V. Van Assshe, S. P. Suetin, “Skalyarnaya zadacha Rimana i silnaya asimptotika approksimatsii Pade i ortogonalnykh mnogochlenov”, Preprinty IPM im. M. V. Keldysha, 2001, 026
[17] A. Aptekarev, A. Cachafeiro, F. Marcellán, “A scalar Riemann boundary value problem approach to orthogonal polynomials on the circle”, J. Approx. Theory, 141:2 (2006), 174–181 | DOI | MR | Zbl
[18] A. S. Demidov, “Funktsionalno-geometricheskii metod resheniya zadach so svobodnoi granitsei dlya garmonicheskikh funktsii”, UMN, 65:1 (391) (2010), 3–96 | DOI | MR | Zbl
[19] S. I. Bezrodnykh, V. I. Vlasov, “Singulyarnaya zadacha Rimana–Gilberta v slozhnykh oblastyakh”, Zh. vychisl. matem. i matem. fiz., 54:12 (2014), 1904–1953 | DOI | MR | Zbl
[20] A. P. Soldatov, Kraevye zadachi teorii funktsii v oblastyakh s kusochno-gladkoi granitsei, Izd-vo Tbilisskogo un-ta, Tbilisi, 1991 | MR | Zbl
[21] A. P. Soldatov, “Vesovye klassy Khardi analiticheskikh funktsii”, Differents. uravneniya, 38:6 (2002), 809–817 | MR | Zbl
[22] S. B. Klimentov, Granichnye svoistva obobschennykh analiticheskikh funktsii, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2014
[23] S. I. Bezrodnykh, V. I. Vlasov, B. V. Somov, “Obobschennye analiticheskie modeli tokovogo sloya Syrovatskogo”, Pisma v Astronomicheskii zhurnal, 37:2 (2011), 133–150
[24] B. V. Somov, Plasma Astrophysics. Part II. Reconnection and Flares, Springer, New York, 2013
[25] E. Treffz, “Über die Wirkung einer Abrundung auf die Torsionsspannungen in der inneren Ecke eines Winkeleisens”, Z. Angew. Math. Mech., 2:4 (1922), 263–267 | DOI | Zbl
[26] S. I. Bezrodnykh, V. I. Vlasov, “On a new representation for the solution of the Riemann–Hilbert problem”, Math. Notes, 99:6 (2016), 932–937 | DOI | MR | Zbl
[27] S. I. Bezrodnykh, V. I. Vlasov, “Singulyarnaya zadacha Rimana–Gilberta v slozhnykh oblastyakh”, Spectral and Evolution Problems, 16 (2006), 51–62
[28] S. I. Bezrodnykh, V. I. Vlasov, “Zadacha Rimana–Gilberta v slozhnoi oblasti dlya modeli magnitnogo peresoedineniya v plazme”, Zh. vychisl. matem. i matem. fiz., 42:3 (2002), 277–312 | MR | Zbl
[29] S. I. Bezrodnykh, “Sootnoshenie tipa Yakobi dlya obobschennoi gipergeometricheskoi funktsii”, III mezhdunarodnaya konferentsiya “Matematicheskie idei P. L. Chebysheva i ikh prilozhenie k sovremennym problemam estestvoznaniya” (Obninsk, 14–18 maya 2006 g.), Tezisy dokladov, 2006, 18–19 | MR
[30] S. I. Bezrodnykh, “Formuly analiticheskogo prodolzheniya i sootnosheniya tipa Yakobi dlya funktsii Laurichelly”, Dokl. AN, 467:1 (2016), 7–12 | MR | Zbl
[31] S. I. Bezrodnykh, “Differentsialnye sootnosheniya tipa Yakobi dlya funktsii Laurichelly $F_D^{(N)}$”, Matem. zametki, 99:6 (2016), 832–847 | DOI | MR | Zbl
[32] G. Lauricella, “Sulle funzioni ipergeometriche a piu variabili”, Rend. Circ. Math. Palermo, 7, Suppl. 1 (1893), 111–158 | DOI
[33] H. Exton, Multiple Hypergeometric Functions and Applications, John Wiley Sons, New York, 1976 | MR | Zbl
[34] K. Aomoto, M. Kita, Theory of Hypergeometric Functions, Springer-Verlag, Tokyo, 2011 | MR | Zbl
[35] P. P. Kufarev, “K voprosu o kruchenii i izgibe sterzhnei poligonalnogo secheniya”, Prikl. matem. mekh., 1:1 (1937), 43–76 | Zbl
[36] V. Koppenfels, F. Shtalman, Praktika konformnykh otobrazhenii, IL, M., 1963 | Zbl
[37] V. I. Vlasov, S. A. Markovskii, B. V. Somov, Ob analiticheskoi modeli magnitnogo peresoedineniya v plazme, Dep. v VINITI No 769-V89, M., 1989
[38] V. I. Vlasov, Kraevye zadachi v oblastyakh s krivolineinoi granitsei, Izd-vo VTs AN SSSR, M., 1987
[39] V. I. Vlasov, S. L. Skorokhodov, “O razvitii metoda Trefftsa”, Dokl. AN, 337:6 (1994), 713–717 | MR | Zbl
[40] W. C. Hassenpflug, “Torsion of uniform bars with polygon cross-section”, Comput. Math. Appl., 46:2-3 (2003), 313–392 | DOI | MR | Zbl
[41] S. I. Bezrodnykh, B. V. Somov, “Analysis of magnetic field and magnetosphere of neutron star under effect of a shock wave”, Adv. in Space Res., 56:5 (2015), 964–969 | DOI
[42] S. I. Bezrodnykh, Singulyarnaya zadacha Rimana–Gilberta i ee prilozhenie, Dis. $\dots$ kand. fiz-matem. nauk, VTs RAN, M., 2006
[43] C. G. J. Jacobi, “Untersuchungen über die Differentialgleichungen der hypergeometrischen Reihe”, J. Reine Angew. Math., 56 (1859), 149–165 | DOI | MR | Zbl
[44] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1973 | MR | Zbl