On Local Properties of Spatial Generalized Quasi-isometries
Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 594-610.

Voir la notice de l'article provenant de la source Math-Net.Ru

An upper bound for the measure of the image of a ball under mappings of a certain class generalizing the class of branched spatial quasi-isometries is determined. As a corollary, an analog of Schwarz' classical lemma for these mappings is proved under an additional constraint of integral character. The obtained results have applications to the classes of Sobolev and Orlicz–Sobolev spaces.
Keywords: mappings with bounded and finite distortion, local behavior of mappings, equicontinuity, bounds for distance distortion.
@article{MZM_2017_101_4_a9,
     author = {R. R. Salimov and E. A. Sevost'yanov},
     title = {On {Local} {Properties} of {Spatial} {Generalized} {Quasi-isometries}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {594--610},
     publisher = {mathdoc},
     volume = {101},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a9/}
}
TY  - JOUR
AU  - R. R. Salimov
AU  - E. A. Sevost'yanov
TI  - On Local Properties of Spatial Generalized Quasi-isometries
JO  - Matematičeskie zametki
PY  - 2017
SP  - 594
EP  - 610
VL  - 101
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a9/
LA  - ru
ID  - MZM_2017_101_4_a9
ER  - 
%0 Journal Article
%A R. R. Salimov
%A E. A. Sevost'yanov
%T On Local Properties of Spatial Generalized Quasi-isometries
%J Matematičeskie zametki
%D 2017
%P 594-610
%V 101
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a9/
%G ru
%F MZM_2017_101_4_a9
R. R. Salimov; E. A. Sevost'yanov. On Local Properties of Spatial Generalized Quasi-isometries. Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 594-610. http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a9/

[1] J. Väisälä, Lectures on $n$-Dimensional Quasiconformal Mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin, 1971 | DOI | MR | Zbl

[2] R. R. Salimov, E. A. Sevost'yanov, “The Poletskii and Väisälä inequalities for the mappings with $(p,q)$-distortion”, Complex Var. Elliptic Equ., 59:2 (2014), 217–231 | DOI | MR | Zbl

[3] D. A. Kovtonyuk, V. I. Ryazanov, R. R. Salimov, E. A. Sevostyanov, “K teorii klassov Orlicha–Soboleva”, Algebra i analiz, 25:6 (2013), 50–102 | MR | Zbl

[4] F. Gehring, “Lipschitz mappings and $p$-capacity of rings in $n$-space”, Advances in the Theory of Riemann Surfaces, Ann. of Math. Stud., 66, Princeton Univ. Press, Princeton, NJ, 1971, 175–193 | MR | Zbl

[5] K. Ikoma, “On the distortion and correspondence under quasiconformal mappings in space”, Nagoya Math. J., 25 (1965), 175–203 | DOI | MR

[6] O. Martio, S. Rickman, J. Väisälä, “Definitions for quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I, 448 (1969), 1–40 | MR | Zbl

[7] V. M. Goldshtein, Yu. G. Reshetnyak, Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR | Zbl

[8] V. I. Kruglikov, “Emkosti kondensatorov i prostranstvennye otobrazheniya, kvazikonformnye v srednem”, Matem. sb., 130 (172):2 (6) (1986), 185–206 | MR | Zbl

[9] V. G. Mazya, Prostranstva S. L. Soboleva, Izd-vo Leningradsk. un-ta, L., 1985 | MR | Zbl

[10] S. Rickman, Quasiregular Mappings, Ergeb. Math. Grenzgeb. (3), 26, Springer-Verlag, Berlin, 1993 | MR | Zbl

[11] R. R. Salimov, E. A. Sevostyanov, “Analogi lemmy Ikoma–Shvartsa i teoremy Liuvillya dlya otobrazhenii s neogranichennoi kharakteristikoi”, Ukr. matem. zhurn., 63:10 (2011), 1368–1380 | MR | Zbl

[12] O. Martio, S. Rickman, J. Väisälä, “Distortion and singularities of quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I, 465 (1970), 1–13 | MR | Zbl

[13] R. R. Salimov, “Ob otsenke mery obraza shara”, Sib. matem. zhurn., 53:4 (2012), 920–930 | MR | Zbl

[14] M. A. Lavrentev, Variatsionnyi metod v kraevykh zadachakh dlya sistem uravnenii ellipticheskogo tipa, Izd-vo Akademii nauk SSSR, M., 1962

[15] S. Saks, Teoriya integrala, IL, M., 1949 | MR | Zbl

[16] K. Kuratovskii, Topologiya, T. 2, Mir, M., 1969 | MR

[17] R. Miniowitz, “Normal families of quasimeromorphic mappings”, Proc. Amer. Math. Soc., 84:1 (1982), 35–43 | DOI | MR | Zbl

[18] A. Golberg, R. Salimov, E. Sevost'yanov, “Normal families of discrete open mappings with controlled $p$-module”, Complex Analysis and Dynamical Systems VI, Part 2, Contemp. Math., 667, Amer. Math. Soc., Providence, RI, 2016, 83–103 | DOI | MR | Zbl

[19] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in Modern Mapping Theory, Springer, New York, 2009 | MR | Zbl