On Local Properties of Spatial Generalized Quasi-isometries
Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 594-610

Voir la notice de l'article provenant de la source Math-Net.Ru

An upper bound for the measure of the image of a ball under mappings of a certain class generalizing the class of branched spatial quasi-isometries is determined. As a corollary, an analog of Schwarz' classical lemma for these mappings is proved under an additional constraint of integral character. The obtained results have applications to the classes of Sobolev and Orlicz–Sobolev spaces.
Keywords: mappings with bounded and finite distortion, local behavior of mappings, equicontinuity, bounds for distance distortion.
@article{MZM_2017_101_4_a9,
     author = {R. R. Salimov and E. A. Sevost'yanov},
     title = {On {Local} {Properties} of {Spatial} {Generalized} {Quasi-isometries}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {594--610},
     publisher = {mathdoc},
     volume = {101},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a9/}
}
TY  - JOUR
AU  - R. R. Salimov
AU  - E. A. Sevost'yanov
TI  - On Local Properties of Spatial Generalized Quasi-isometries
JO  - Matematičeskie zametki
PY  - 2017
SP  - 594
EP  - 610
VL  - 101
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a9/
LA  - ru
ID  - MZM_2017_101_4_a9
ER  - 
%0 Journal Article
%A R. R. Salimov
%A E. A. Sevost'yanov
%T On Local Properties of Spatial Generalized Quasi-isometries
%J Matematičeskie zametki
%D 2017
%P 594-610
%V 101
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a9/
%G ru
%F MZM_2017_101_4_a9
R. R. Salimov; E. A. Sevost'yanov. On Local Properties of Spatial Generalized Quasi-isometries. Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 594-610. http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a9/