Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_101_4_a4, author = {G. S. Osipenko}, title = {Lyapunov {Exponents} and {Invariant} {Measures} on a {Projective} {Bundle}}, journal = {Matemati\v{c}eskie zametki}, pages = {549--561}, publisher = {mathdoc}, volume = {101}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a4/} }
G. S. Osipenko. Lyapunov Exponents and Invariant Measures on a Projective Bundle. Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 549-561. http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a4/
[1] A. M. Lyapunov, Obschaya zadacha ob ustoichivosti dvizheniya, Gostekhizdat, M.–L., 1950 | MR | Zbl
[2] C. Conley, Isolated Invariant Set and the Morse Index, CBMS Regional Conf. Ser., 38, Amer. Math. Soc., Providence, RI, 1978 | MR | Zbl
[3] M. Shub, Stabilité globale de systèmes dynamiques, Asterisque, 56, Soc. Math. France, Paris, 1978 | MR | Zbl
[4] F. Colonius, W. Kliemann, The Dynamics of Control, Birkhäuser Boston, Boston, MA, 2000 | MR | Zbl
[5] G. Osipenko, “Dynamical Systems, Graphs, and Algorithms”, Lectures Notes in Math., 1889, Springer-Verlag, Berlin, 2007 | DOI | MR | Zbl
[6] G. S. Osipenko, “Spectrum of a dynamical system and applied symbolic dynamics”, J. Math. Anal. Appl., 252:2 (2000), 587–616 | DOI | MR | Zbl
[7] G. S. Osipenko, J. V. Romanovsky, N. B. Ampilova, E. I. Petrenko, “Computation of the Morse spectrum”, J. Math. Sci. (N. Y.), 120:2 (2004), 1155–1166 | DOI | MR | Zbl
[8] D. Lind, B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[9] C. Robinson, Dynamical Systems. Stability, Symbolic Dynamics and Chaos, CRC Press, Boca Raton, FL, 1995 | MR | Zbl
[10] C. S. Hsu, Cell-to-Cell Mapping. A Method of Global Analysis for Nonlinear Systems, Appl. Math. Sci., 64, Springer, New York, 1987 | MR | Zbl
[11] G. S. Osipenko, “O simvolicheskom obraze dinamicheskoi sistemy”, Kraevye zadachi, Permskii politekhnicheskii in-t, Perm, 1983, 101–105 | MR | Zbl
[12] G. S. Osipenko, “Localization of the chain recurrent set by symbolic dynamics methods”, Proceedings of Dynamic Systems and Applications, Vol. 1, Dynamic, Atlanta, GA, 1994, 227–282 | MR | Zbl
[13] G. Osipenko, “Symbolic images and invariant measures of dynamical systems”, Ergodic Theory Dynam. Systems, 30:4 (2010), 1217–1237 | DOI | MR | Zbl
[14] A. Katok, B. Hasselblat, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl