Lyapunov Exponents and Invariant Measures on a Projective Bundle
Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 549-561

Voir la notice de l'article provenant de la source Math-Net.Ru

A discrete dynamical system generated by a diffeomorphism $f$ on a compact manifold is considered. The Morse spectrum is the limit set of Lyapunov exponents of periodic pseudotrajectories. It is proved that the Morse spectrum coincides with the set of averagings of the function $\varphi(x,e)=\ln|Df(x)e|$ over the invariant measures of the mapping induced by the differential $Df$ on the projective bundle.
Keywords: Morse spectrum, chain-recurrent set, projective bundle, invariant measure, symbolic image, flow on a graph, averaging with respect to a measure.
@article{MZM_2017_101_4_a4,
     author = {G. S. Osipenko},
     title = {Lyapunov {Exponents} and {Invariant} {Measures} on a {Projective} {Bundle}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {549--561},
     publisher = {mathdoc},
     volume = {101},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a4/}
}
TY  - JOUR
AU  - G. S. Osipenko
TI  - Lyapunov Exponents and Invariant Measures on a Projective Bundle
JO  - Matematičeskie zametki
PY  - 2017
SP  - 549
EP  - 561
VL  - 101
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a4/
LA  - ru
ID  - MZM_2017_101_4_a4
ER  - 
%0 Journal Article
%A G. S. Osipenko
%T Lyapunov Exponents and Invariant Measures on a Projective Bundle
%J Matematičeskie zametki
%D 2017
%P 549-561
%V 101
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a4/
%G ru
%F MZM_2017_101_4_a4
G. S. Osipenko. Lyapunov Exponents and Invariant Measures on a Projective Bundle. Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 549-561. http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a4/