Lyapunov Exponents and Invariant Measures on a Projective Bundle
Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 549-561.

Voir la notice de l'article provenant de la source Math-Net.Ru

A discrete dynamical system generated by a diffeomorphism $f$ on a compact manifold is considered. The Morse spectrum is the limit set of Lyapunov exponents of periodic pseudotrajectories. It is proved that the Morse spectrum coincides with the set of averagings of the function $\varphi(x,e)=\ln|Df(x)e|$ over the invariant measures of the mapping induced by the differential $Df$ on the projective bundle.
Keywords: Morse spectrum, chain-recurrent set, projective bundle, invariant measure, symbolic image, flow on a graph, averaging with respect to a measure.
@article{MZM_2017_101_4_a4,
     author = {G. S. Osipenko},
     title = {Lyapunov {Exponents} and {Invariant} {Measures} on a {Projective} {Bundle}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {549--561},
     publisher = {mathdoc},
     volume = {101},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a4/}
}
TY  - JOUR
AU  - G. S. Osipenko
TI  - Lyapunov Exponents and Invariant Measures on a Projective Bundle
JO  - Matematičeskie zametki
PY  - 2017
SP  - 549
EP  - 561
VL  - 101
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a4/
LA  - ru
ID  - MZM_2017_101_4_a4
ER  - 
%0 Journal Article
%A G. S. Osipenko
%T Lyapunov Exponents and Invariant Measures on a Projective Bundle
%J Matematičeskie zametki
%D 2017
%P 549-561
%V 101
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a4/
%G ru
%F MZM_2017_101_4_a4
G. S. Osipenko. Lyapunov Exponents and Invariant Measures on a Projective Bundle. Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 549-561. http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a4/

[1] A. M. Lyapunov, Obschaya zadacha ob ustoichivosti dvizheniya, Gostekhizdat, M.–L., 1950 | MR | Zbl

[2] C. Conley, Isolated Invariant Set and the Morse Index, CBMS Regional Conf. Ser., 38, Amer. Math. Soc., Providence, RI, 1978 | MR | Zbl

[3] M. Shub, Stabilité globale de systèmes dynamiques, Asterisque, 56, Soc. Math. France, Paris, 1978 | MR | Zbl

[4] F. Colonius, W. Kliemann, The Dynamics of Control, Birkhäuser Boston, Boston, MA, 2000 | MR | Zbl

[5] G. Osipenko, “Dynamical Systems, Graphs, and Algorithms”, Lectures Notes in Math., 1889, Springer-Verlag, Berlin, 2007 | DOI | MR | Zbl

[6] G. S. Osipenko, “Spectrum of a dynamical system and applied symbolic dynamics”, J. Math. Anal. Appl., 252:2 (2000), 587–616 | DOI | MR | Zbl

[7] G. S. Osipenko, J. V. Romanovsky, N. B. Ampilova, E. I. Petrenko, “Computation of the Morse spectrum”, J. Math. Sci. (N. Y.), 120:2 (2004), 1155–1166 | DOI | MR | Zbl

[8] D. Lind, B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[9] C. Robinson, Dynamical Systems. Stability, Symbolic Dynamics and Chaos, CRC Press, Boca Raton, FL, 1995 | MR | Zbl

[10] C. S. Hsu, Cell-to-Cell Mapping. A Method of Global Analysis for Nonlinear Systems, Appl. Math. Sci., 64, Springer, New York, 1987 | MR | Zbl

[11] G. S. Osipenko, “O simvolicheskom obraze dinamicheskoi sistemy”, Kraevye zadachi, Permskii politekhnicheskii in-t, Perm, 1983, 101–105 | MR | Zbl

[12] G. S. Osipenko, “Localization of the chain recurrent set by symbolic dynamics methods”, Proceedings of Dynamic Systems and Applications, Vol. 1, Dynamic, Atlanta, GA, 1994, 227–282 | MR | Zbl

[13] G. Osipenko, “Symbolic images and invariant measures of dynamical systems”, Ergodic Theory Dynam. Systems, 30:4 (2010), 1217–1237 | DOI | MR | Zbl

[14] A. Katok, B. Hasselblat, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl