Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2017_101_4_a2, author = {A. A. Vladimirov}, title = {Representation {Theorems} and {Variational} {Principles} for {Self-Adjoint} {Operator} {Matrices}}, journal = {Matemati\v{c}eskie zametki}, pages = {516--530}, publisher = {mathdoc}, volume = {101}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a2/} }
A. A. Vladimirov. Representation Theorems and Variational Principles for Self-Adjoint Operator Matrices. Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 516-530. http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a2/
[1] M. Kraus, M. Langer, C. Tretter, “Variational principles and eigenvalue estimates for unbounded block operator matrices and applications”, J. Comput. Appl. Math., 171:1-2 (2004), 311–334 | DOI | MR | Zbl
[2] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, T. 1, Mir, M., 1971 | MR | Zbl
[3] F. A. Berezin, M. A. Shubin, Uravnenie Shredingera, Izd-vo Mosk. un-ta, M., 1983 | MR | Zbl
[4] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[5] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl
[6] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | Zbl
[7] A. A. Vladimirov, “Otsenki chisla sobstvennykh znachenii samosopryazhennykh operator-funktsii”, Matem. zametki, 74:6 (2003), 838–847 | DOI | MR | Zbl
[8] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl
[9] H. Langer, M. Langer, C. Tretter, “Variational principles for eigenvalues of block operator matrices”, Indiana Univ. Math. J., 51:6 (2002), 1427–1459 | DOI | MR | Zbl
[10] P. Lancaster, A. Shkalikov, Qiang Ye, “Strongly definitizable linear pencils in Hilbert space”, Integral Equations Operator Theory, 17:3 (1993), 338–360 | DOI | MR | Zbl