Representation Theorems and Variational Principles for Self-Adjoint Operator Matrices
Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 516-530.

Voir la notice de l'article provenant de la source Math-Net.Ru

We use the notion of triples $\mathfrak{D}^+\hookrightarrow \mathfrak{H}\hookrightarrow\mathfrak{D}^-$ of Hilbert spaces to develop an analog of the Friedrichs extension procedure for a class of nonsemibounded operator matrices. In addition, we suggest a general approach (stated in the same terms) to the construction of variational principles for the eigenvalues of such matrices.
Keywords: rigged space, operator matrix, self-adjoint extension, variational principle.
@article{MZM_2017_101_4_a2,
     author = {A. A. Vladimirov},
     title = {Representation {Theorems} and {Variational} {Principles} for {Self-Adjoint} {Operator} {Matrices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {516--530},
     publisher = {mathdoc},
     volume = {101},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a2/}
}
TY  - JOUR
AU  - A. A. Vladimirov
TI  - Representation Theorems and Variational Principles for Self-Adjoint Operator Matrices
JO  - Matematičeskie zametki
PY  - 2017
SP  - 516
EP  - 530
VL  - 101
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a2/
LA  - ru
ID  - MZM_2017_101_4_a2
ER  - 
%0 Journal Article
%A A. A. Vladimirov
%T Representation Theorems and Variational Principles for Self-Adjoint Operator Matrices
%J Matematičeskie zametki
%D 2017
%P 516-530
%V 101
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a2/
%G ru
%F MZM_2017_101_4_a2
A. A. Vladimirov. Representation Theorems and Variational Principles for Self-Adjoint Operator Matrices. Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 516-530. http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a2/

[1] M. Kraus, M. Langer, C. Tretter, “Variational principles and eigenvalue estimates for unbounded block operator matrices and applications”, J. Comput. Appl. Math., 171:1-2 (2004), 311–334 | DOI | MR | Zbl

[2] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, T. 1, Mir, M., 1971 | MR | Zbl

[3] F. A. Berezin, M. A. Shubin, Uravnenie Shredingera, Izd-vo Mosk. un-ta, M., 1983 | MR | Zbl

[4] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[5] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[6] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | Zbl

[7] A. A. Vladimirov, “Otsenki chisla sobstvennykh znachenii samosopryazhennykh operator-funktsii”, Matem. zametki, 74:6 (2003), 838–847 | DOI | MR | Zbl

[8] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl

[9] H. Langer, M. Langer, C. Tretter, “Variational principles for eigenvalues of block operator matrices”, Indiana Univ. Math. J., 51:6 (2002), 1427–1459 | DOI | MR | Zbl

[10] P. Lancaster, A. Shkalikov, Qiang Ye, “Strongly definitizable linear pencils in Hilbert space”, Integral Equations Operator Theory, 17:3 (1993), 338–360 | DOI | MR | Zbl