Representation Theorems and Variational Principles for Self-Adjoint Operator Matrices
Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 516-530

Voir la notice de l'article provenant de la source Math-Net.Ru

We use the notion of triples $\mathfrak{D}^+\hookrightarrow \mathfrak{H}\hookrightarrow\mathfrak{D}^-$ of Hilbert spaces to develop an analog of the Friedrichs extension procedure for a class of nonsemibounded operator matrices. In addition, we suggest a general approach (stated in the same terms) to the construction of variational principles for the eigenvalues of such matrices.
Keywords: rigged space, operator matrix, self-adjoint extension, variational principle.
@article{MZM_2017_101_4_a2,
     author = {A. A. Vladimirov},
     title = {Representation {Theorems} and {Variational} {Principles} for {Self-Adjoint} {Operator} {Matrices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {516--530},
     publisher = {mathdoc},
     volume = {101},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a2/}
}
TY  - JOUR
AU  - A. A. Vladimirov
TI  - Representation Theorems and Variational Principles for Self-Adjoint Operator Matrices
JO  - Matematičeskie zametki
PY  - 2017
SP  - 516
EP  - 530
VL  - 101
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a2/
LA  - ru
ID  - MZM_2017_101_4_a2
ER  - 
%0 Journal Article
%A A. A. Vladimirov
%T Representation Theorems and Variational Principles for Self-Adjoint Operator Matrices
%J Matematičeskie zametki
%D 2017
%P 516-530
%V 101
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a2/
%G ru
%F MZM_2017_101_4_a2
A. A. Vladimirov. Representation Theorems and Variational Principles for Self-Adjoint Operator Matrices. Matematičeskie zametki, Tome 101 (2017) no. 4, pp. 516-530. http://geodesic.mathdoc.fr/item/MZM_2017_101_4_a2/